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This study investigate the mutual fine-tuning of ongoing EEG rhythmic fea-
tures with RGB values controlling color shades of computer screen during neuro-
feedback training. Fifteen participants had not been informed about the exist-
ence of neurofeedback loop (NF), but were guided only to look at the computer
screen. It was found that during such unconscious NF training, a variety of
color shades on the screen gradually changed from rather various types to the
main one within the framework of color palette specified for each individual.
This phenomenon was not observed in control experiments with simulated neuro-
feedback. Individual color patterns induced on the screen during NF did not
depend on the schema of connection between of EEG rhythms and RGB con-
troller. It is suggested that the basic neurophysiological mechanism of described
NF training consists of the directed selection of EEG patterns reinforced by
comfortable color shades without conscious control.

Keywords brain-computer interface (BCI), color perception, electroencepha-
logram (EEG), neurofeedback (NF), RGB model, spectral measures

INTRODUCTION

A Brain Computer Interface (BCI) is a communication system in which mes-
sages or commands that an individual sends to the external world do not pass
through the brain’s normal output pathways of peripheral nerves and—as
defined by Wolpaw et al. (2002).

A BCI implements measurable electrical signals from the brain to a con-
trol or communication system. Measurements may be noninvasively taken
from the scalp, resulting in an electroencephalogram (EEG). In the future,
BCI system will monitor brain wave activities in real time and allow humans
to use them for controlling any electronically addressable device or software
through a local processor.

In the late 1980s and early 1990s, the field of BCI began to emerge in
Europe and United States—driven by the idea of solving the communication
problem of many disabled people by the use of an available power computer.
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The essential part of BCI development is well known as the neurofeedback
(NF) regulation first described by Kamiya (1968). It was shown in study of
Kamiya and in many further investigations that humans can operate their
parameters of EEG if these parameters are seen on the screen and reinforced
with the appropriate reward such as scores, money, or simply encouraging
words.

The main mechanism of NF is the operant conditioning paradigm where
users learn to influence the electrical activity of their brain. EEG rhythm
training that is suitable to both healthy and clinical populations is tradition-
ally viewed as useful in a relax induced technique, originally associated with
Zen meditation (Kassamatau & Hirai, 1969). It is also in reference to pa-
thologies characterized by dysfunctional regulation of cortical activity, such
as epilepsy forming part of a anticonvulsant therapy (Sterman, 1974; Kotchoubey
et al., 2001) and attention deficit hyperactivity disorder in children (Linden et
al., 1996; Lubar et al., 1997; Egner et al., 2001). Usually healthy individuals
are capable of increasing their theta/alpha ratios after only five sessions (Egner
et al., 2002).

Thus, if the person can operate parameters of his or her own brain activ-
ity, these parameters can be used as managing or triggering signals for different
kinds of external devices. The central idea of Brain–Machine collaboration is
to use EEG parameters not for the control of these parameters per se, for
example to improve the health, but for the management of external objects
previously connected with these parameters by means of a special interface
named BCI.

Basically, a BCI provides new non-muscular and non-nervous channels
for sending messages and commands to the external world. In the authors’
opinion BCI is not only a brand-new neurologically based technology for
clinics, but a new paradigm in neuroscience that can reveal previously un-
known brain possibilities to develop the behavior “without nerves and muscles”
and to integrate the person into new “thought driven” reality. The user has to
only concentrate on some mental images that reflect a stable pattern in EEG
and BCI will recognize this pattern as a command to previously fixed action:
such as switching on the light or wheel-chair moving, and so on.

BCI has some applications within the medical community, for example,
for locked-in patients who have no possibility to use their muscles (Hinterberger
et al., 2003).

Unfortunately until now it was very difficult to use BCI systems both for
disabled people and for healthy individuals. For example, one of the best
BCI system, called Thought Translation Interface (TTI), takes more than
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several months to get very modest results, even by highly motivated users
(Birbaumer et al., 1999, 2003).

In the authors’ opinion, the main problem with contemporary BCI para-
digms for users is the necessity to keep their mental states of concentration
constant on the inner images or other kinds of mental states that have spe-
cific reflection in EEG patterns well recognizable for BCI. The operations
with external objects in BCI paradigm are becoming not easier than, for
example, piano playing or bicycle riding with constantly thinking how to
move fingers or legs.

Fortunately after some training almost everybody is able to play piano
music and ride on the bicycle automatically, that is, without conscious con-
trol. This process is known as automation during motor skill acquisition (Etnier
et al., 1996; Ioffe, 2003). Different sets of brain regions are responsible for
behavior before and after automation (Petersen et al., 1998; Honda et al.,
1998). But unfortunately the automation does not occur in people even after
some years of training in BCI paradigm with the greatest motivation to do so
(Neuman, 2003).

The authors believe that the main reason for such poor automation pro-
cess in contemporary BCI paradigm is double indetermination between the
object of conditioning as visible realization of EEG signals (e.g., moving the
cursor on the screen) and the reward as conscious evaluation of success
trials.

First of them is the absence of definite determination between conscious
intention of users for getting definite mental states (images) and result of this
process. The second one is the lack of definite connection between even
simple motor imagery (Cincotti et al. 2003) and the resulting EEG patterns,
let alone more complex images (Curran et al., 2004; Kosslyn & Thompson,
2003). As a result the user cannot evoke the same EEG pattern every trial
and BCI cannot properly recognize the user’s intentions.

One of the approaches to overcome this problem is to refuse conscious
control of feedback information in the BCI paradigm. At first glance, such an
approach seems impossible because the user loses positive reinforcement that
would come after a successful trial for conscious evaluation. Indeed in clas-
sical scheme of NF, the feedback gives back indifferent signals to users such
as moving the cursor on the screen and the only previous instruction allows
the participant to transform this signal in reinforcement reward.

Basically unconscious reinforcement reward is possible only in the case
of active influence of feedback signal per se without previous knowledge. In
this case, the user could automatically try to keep only comfortable for him
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the feedback signals and reject the undesirable ones if he could manage BCI
without conscious control.

Thus the user will automatically select mental states suitable to operate
the BCI system. The authors believe that after training procedure the user
could automatically use this unconscious mental state as brain unconscious
commands for BCI system. This is the key idea of their approach to develop-
ing the new paradigm for BCI systems.

The objective of the present study was to investigate the possibility for
the operant conditioning of EEG patterns on humans on subconscious level.
This study used the color as the information carrier in the feedback channel
of BCI, basing this on the old idea (for review see Luscher, 1983) that sur-
rounding color can modify mental state in definite direction on subconscious
level. This conception also says that when a person chooses preferable color
background or color card he or she involuntary tends to the color conditions,
which could influence his mental state. Together with some other authors,
the present authors believe that the choice of color spectrum is the feeling
language of humans acquired from childhood (Burkitt et al., 2003).

It was hypothesized that color back signaling has unconscious reinforce-
ment effects in the NF paradigm and color-induced patterns of EEG can be
used as managing signal for BCI systems. The concrete aim of the present
work was to investigate possible directional changes in dynamical EEG pat-
terns during NF training with color back signal. Positive reinforcement by
comfortable color has to lead to more frequent occurrences of corresponding
EEG patterns. On the contrary, the negative reinforcement by aversive shades
of color will result in reduction or even to disappearance of corresponding
EEG patterns.

This article describes the processes of adjustments of color and EEG
features during implicit learning in BCI paradigm. This article emphasizes a
contour of the way for operating BCI automatically without conscious con-
trol and consequently the possibility to express human feelings through BCI
as natural as it occurs when playing piano.

MATERIALS AND METHODS

Participants

Fifteen undergraduate and postgraduate students (male, aged 19–28 years:
M = 22.1, SD = 2.9) were recruited for the study. All neurofeedback par-
ticipants remained naive as to their specific aims of study until being fully
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debriefed at the end of the training program. All participants were right-
handed, had normal or corrected-to-normal vision and approximately the
same Walneffer coefficient according to the Luscher Color Test (Luscher,
1983), that is, degree of similarity with the multicolor choice in control
rest conditions. The authors selected only participants with normal expres-
sion and gradient of EEG alpha-activity. The study was approved by the
Research Ethics Committee.

EEG Registration

EEG was recorded with one scalp electrode placed on the skull at the right
parietal position (P4, 10–20 system) referenced to the linked ears with ground
electrode at the Fpz. Additionally four facial Ag/AgCl electrodes were em-
ployed to measure eye movements from which horizontal and vertical elec-
trooculograms (EOG) were derived. These electrodes were positioned at the
left and right outer canthi and approximately 1.5 cm above and below the left
eye. The EOG measures were obtained for identification of ocular artifact
and big saccades. All electrode impedances were below 5 kOm.

The analog EEG signals were amplified, analog-to-digital converted (sam-
pling rate 128 Hz, 12-bit resolution) with bandpass of 0.5–30 Hz (6 dB/octave)
and in on-line mode pass to the BCI system for feature extraction and EEG
pattern classification (see later).

This article concentrates on one quantitative EEG feature set: power
spectral density (PSD, uV2) within theta (4.0–7.0 Hz), alpha (7.5–12 Hz), and
beta (16–22 Hz) frequency bands. The EEG was converted from the time to
the frequency domain using a fast Fourier transform (FFT).

General Procedures

The subjects were seated in a dimly lit room in comfortable chairs at a
distance of 60–70 cm from the SVGA monitor (21 inches) on which the
feedback by color signaling was presented with brightness comfortable for
participants. They were in an awake condition but without any specific men-
tal task. They were only told to take a comfortable position and to look at the
screen without a definite purpose and even without precise focus on the
screen.

There were 15 EEG recording trials, each 2 min, divided by 2 min
breaks, covering three conditions: reference (RE), neurofeedback (NF) and



UNCONSCIOUS OPERANT CONDITIONING 787

mock (MK). The procedure always started with three RE trials: RE1, RE2,
and RE3. Subjects simply would look at the black screen during RE condi-
tion. Then after a short break, the EEG was recorded in NF and MK condi-
tions randomly following one after another for each subject. Therefore sub-
jects # 2, 5, 6, 9, 10, 12, 13, 15 were tested in NF condition at the beginning
and after that in MK condition, and on the contrary order for other subjects.
Time for rest between NF and Mock procedures was about 10–15 min.

During biofeedback procedure all data were inspected automatically to
remove the segments of EEG in which the ocular or muscle interval occurred
from the normal ones. NF condition consists of 6 trials for 2 min EEG regis-
trations each. During each NF trial, the subject was asked simply to look at
the screen to determine which color was changing allegedly in random order.
Actually, during NF condition, the color of the screen depended on indi-
vidual features of on-line EEG (see later).

The authors selected RGB color model for numeric values to control
colors on the computer screen by EEG features. FFT-based power spectral
density (PSD) estimates of three EEG frequency bands (3-D vector) for slid-
ing 2-s epochs (overlapping 75%) were calculated in on-line mode. Each
short term 3-D PSD vector taken during NF trial was subtracted by average
3-D PSD vector of RE conditions, which was previously calculated off-line.
The subtraction spectra (Kaplan et al., 1998) or 3-D subtracted PSD (sPSD)
was used to manage the RGB controller: deviation of R, G, and B compo-
nents on both sides from the middle RGB value (128, 128, 128—moderate
gray) depended on percentage changes of the epoch PSD theta, alpha, and
beta power in EEG in relation to the average level of EEG recorded earlier
on the same subject during RE condition. The factor of signal transfer in
brain–computer interface corresponded to the formula: 1% of PSD changes
in EEG were equated to 3 levels of RGB changes. For example, if the regular
epoch of EEG is changed in theta, alpha, and beta on +10, –5 and + 7%
accordingly, the current screen color was defined in RGB model as 128 + 30
= 158, 128 – 15 = 113, 128 + 21 = 149. Therefore the maximal (255) and
minimal (0) values, for example, for R component of RGB model, could be
reached by changing theta power bands on 128/3 = 43% to one or opposite
side.

The protocol of the MK condition was the same as NF for the subject
one with only difference that the subject’s EEG was not connected with the
brain–computer interface. The RGB controller of computer screen in MK
condition was managed by standard EEG, recorded previously from another
subject during real NF condition.
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Off-Line Analysis of Obtained EEG Data

One minute artifact-free EEGs were selected by visual editing of the continu-
ous EEG that was recorded in each of all three trials of RE condition and in
last three trials of NF and MK conditions. Therefore for each subject, 3 min
EEG records were selected for each condition. For these EEG records, FFT-
based 3 sets of subtraction PSD vectors were prepared for each subject using
average PSD for RE period for a deducted factor. Each set of subtracted PSD
contained 351 sPSD vectors. To test the hypothesis that a subject’s EEG
would be directly changed during NF condition, the authors searched the
dominant subset of sPSD vectors that could determine the main tendency of
EEG changes. The authors applied cluster analysis to each set of subtractive
PSD vectors to do so.

The authors selected the K-means clustering algorithm. Whenever cluster-
ing is performed, the question of the optimum number of clusters is raised. It is
well established in the literature that there is no universal solution to this
question. Because of the rather high level of single spectrum variability, the
authors decided to use a fixed number of clusters, to be used for all conditions
and all subjects. Taking into consideration that each set of sPSD vectors for
RE, NF, and MK conditions consist of 351 vectors (for 3 min of EEG observa-
tion 117 vectors each) and after examination of many clustering results, the
authors decided to use 5 clusters for each set. In order to ensure that 3 different
frequency components of spectra play an equal role in the clustering proce-
dure, all feature changes were normalized to the percentage scale by dividing
all values of each feature by the average value for reference set of spectra.
Because there was only a rather small number of sPSD vectors in the testing set
and high dynamical range of EEG events, the existence of outlines can strongly
affect clustering results. This is why the authors eliminated 3% vectors of most
prominent vectors at the beginning of final clustering procedures.

The authors compared the averaged 3-D PSD vectors of the biggest
clusters between 3 conditions. Corresponding measures of EEG patterns in
different conditions were compared using Student paired t-test at the one-
tailed p < .05 level.

EXPERIMENTAL RESULTS

Experiment 1

Table 1 demonstrates the group average number of sPSD vectors in the big-
gest clusters for each of three conditions of EEG recording: RE, NF, and MK.
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Among 5 clusters that have expectations of 20% each, there is the big-
gest cluster containing about 52 and 53% sPSD vectors during Reference and
NF periods and slightly less (on 12–13%, p < .05) during mock training.
Therefore, the authors used the most frequent cluster for the evaluation of
NF process because other clusters each contained no more then 12–15%
vectors.

The test hypothesis was that, if the characteristics of the biggest cluster
of EEG spectra are different when a subject’s EEG controls the monitor
color when compared with mock procedure, the active NF process starts
even if subject does not realize it. The investigator can also actually observe
this process if color of screen changes systematically from gray in NF condi-
tion to other colors.

The hypothesized EEG changes during NF condition were assessed by
comparisons (paired t tests at one-tailed p < .05 levels) with RE and MK
conditions. Descriptive statistics of all comparisons are presented in Table 2
as mean percentage changes in EEG power spectra during NF condition with
comparison to Reference and Mock conditions. Only statistically significant
results are presented in Table 2.

As can be seen in Table 2, for 15 subjects, the hypothesized significant
changes (paired t tests, p < .05) for three EEG frequency bands during pas-
sive NF condition are reflected in 78% and 73% comparisons if compared
with reference and mock condition. And only in 24% of cases were signifi-
cant changes detected between Reference and Mock conditions (Table 2). In
9 of 15 subjects the significance EEG changes were found simultaneously in
three frequency bands (Table 2).

To get more vivid results, the authors recalculated average subtraction
spectra for greatest spectrum clusters in RGB scale according to ratio of: 1%
of changes in EEG spectrum equivocal to shift in 3 RGB levels (see Meth-
ods) and presented it as average RGB codes (Table 3).

Table 3 shows the results of difference between three conditions: RE,
NF, and MK. The notation used for the N% column indicates the number for
RGB vectors (%) in the biggest cluster for each person and period of testing.

Table 1. Number of sPSD vectors in the greatest clusters in % of total number of
sPSD vectors in all five clusters for each of three conditions of EEG recording:
RE, NF, and MK

RE NF MK RE-MK NF-MK

N% of sPSD 52 ± 3.8 53 ± 3.6 39 ± 3 p < .05 p < .05
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In the R, G, and B columns for RE, NF, and MK conditions, the values
indicate the average RGB codes of biggest EEG spectra clusters for all three
conditions. The shading color of each cell of three tables in RE, NF, and MK
periods corresponds to the RGB code specified inside cells. That means, for
example, that subject #3 produced mainly (64% of epochs) green-like color
in NF condition whereas during reference period he produced (if connected
with RGB controller) mainly grey-like color (71% of epochs).

Table 3 shows that only three subjects (1, 4, and 9) had no appreciable
changes in screen color during NF procedure, and that means absence of
changes in average EEG spectra of biggest cluster for NF condition. Other 12
subjects evidently manifested changes on the screen color during NF condition
(Table 3). The authors divided these subjects into two well-recognizable groups:
“Green”-like (subjects: 3, 5, 8, 13, 15), ”Orange”-like (subjects: 2, 6, 10, 11),
and one mixed group (subjects: 7—yellow, 12 and 14—“Violet”–like).

To get a more quantified picture of EEG-driven RGB changes during
NF and MK periods the authors calculated them in 3-D space (Figure 1). For

Table 2. Means for EEG changes in three frequencies bands of greatest cluster during
NF and Mock conditions concerning Reference [(NF-RE) and (NF-MK)] condition and
during Mock condition concerning Reference condition (MK-RE)

NF–RE (%) NF–MK (%)     MK–RE (%)

Subjects Theta Alpha Beta Theta Alpha Beta Theta Alpha Beta

1 –10 –10
2 43 –16 –23 34 –8 –23 10 –8
3 –13 19 –16 12 –21
4
5 11 10 –7
6 34 –10 –24 37 –25
7 32 32 –28 38 37 –21 –7
8 –27 16 –21 –22 18 –27
9 10 9 10 10 9

10 38 –13 –30 25 –14 13 –8 –17
11 31 –25 33 –25
12 29 –25 –7 26 –22
13 –20 12 –7 –24 20 –10 –8
14 20 –25 –10 13 –17 –9
15 –18 –17 –22 –9 –8

 Only statistically significant results (paired t test, one tailed p < 0.05 level) presented.
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Table 3. Average RGB Codes, managed by EEG spectral futures in NF conditions
compared to RE and MK conditions (see notations in text)*

   Reference  condition:   
RE1+RE2+R E3   

Neurofeedback condition:   
NF4+NF5+NF6   

Mock condition: 
MK4+MK5+MK6   

Sub - s   N%     R   
 (Th)   

G   
(Al)   

B   
(Bt)   

N%      R   
(Th)   

G   
(Al)   

B   
(Bt)   

N%       R   
   (Th)   

G   
(Al)   

B   
(Bt)   

1   63   133   138   111   61   121   109   104   43   124   139   118   

2   44   113   142   121   39   243   94   53   24   142   118   121   

3   71   134   117   109   64   96   175   62   35   114   138   124   

4   66   112   113   132   54   126   120   115   37   132   125   135   

5   41   123   126   100   56   123   160   87   47   121   129   108   

6   34   139   119   109   42   241   88   38   38   129   97   112   

7   67   130   121   115   34   225   216   31   32   111   105   94   

8   36   121   139   10 5   48   39   187   43   29   106   134   123   

9   31   99   92   103   51   119   122   131   44   128   122   130   

10   54   97   114   131   47   210   76   40   33   136   90   81   

11   49   137   115   133   53   230   107   58   42   132   108   134   

12   71   133   113   127   43   219   39   106   65   142   106   125   

13   55   111   135   104   69   51   170   83   51   123   1 10   114   

14   59   120   136   114   62   180   60   83   36   142   112   109   

15   48   117   133   126   61   64   152   76   28   131   141   102   

  

Reference condition:
RE1+RE2+RE3

Mock condition:
MK4+MK5+MK6

Neurofeedback condition:
RF4+RF5+RF6

*See Color Plate IV at end of issue.

Figure 1. 3-D distances between RGB vectors managed by EEG spectral future in NF con-
dition and the same vectors in RE and MK conditions for each participant (#1–14) grouped
in Gray-, Orange-, Green-, Yellow-, Violet-like groups and in average (Ave) values. (See
Color Plate V at end of issue.)

 

0 

50 

100 

150 

200 

1 4 9 3 5 8 13 15 2 6 10 11 7 12 14 Ave 

3D-RE-128 

3D-NF-128 

3D-MK-128 

Deviatoins of RGB vectors  from 3D-128 "Gray" point  for RE, NF and MK conditions 

  Gray                    Orange                                     Green            Yellow   Violet  

36.4 



792 A. Y. KAPLAN ET AL.

example, if each frequency band of EEG changes 7% (see Table 2), that is,
each RGB component changes 7 × 3 = 21 levels, that resulting deviation in
3D space from the reference point (RGB: 128–128–128) will reach a value
of 36.4. The authors used the radius 36.4 around reference point in RGB
3-D space as a threshold level to indicate that EEG really changed during NF
conditions (Tables 2 and 3, Figure 1).

Only 2 subjects (7 and 10) demonstrated the EEG-RGB changes above
threshold level (36.4) during Mock procedure in the average EEG driven
RGB vector (Figure 1), which was not obvious to investigators if presented
in color changes on the screen, as for NF period (Table 3).

Most of the subjects looked at the screen during mock period without
any significant changes in EEG and as consequence—without color stabiliza-
tion (Tables 2 and 3) on the screen. It was not connected with the size of
biggest clusters of subtractive EEG spectra during Mock period because they
were not significantly different from ones during reference and NF periods
(no more than 12%, Table 1).

The authors could allocate EEG-RGB changes during NF procedure among
15 subjects (Table 3, Figure 1). Two big color groups: “Green-like” (subjects
3, 5, 8, 13, 15) and “Orange-like” (subjects 2, 6, 10, 11), and two smaller
ones: “Violet-like” (subjects 12 and 14) and “Yellow-like” (subject 7). Three
subjects (“Gray-like,” 1, 4, 9) demonstrated no evident changes in color on
the screen during NF period.

The authors can note small variability in changes of the RGB codes
between subjects inside the groups for greatest cluster of EEG spectra (Figure
2). Probably concerning preferred colors all people can be subdivided into a
rather small number of groups.

EXPERIMENT 2

Of the hypothesized color-mediated subconscious operant conditioning of
EEG features; the expected EEG changes were confirmed by the current
data. The authors found non-instructed color stabilization on the screen only
during NF condition with comparison to reference period and NF simulation
(MK condition). Furthermore, the fact that most subjects tended to stabilize
to usually more comfortable or basic colors on the screen (green, orange,
etc.) during NF condition reinforces the interpretation of effects as an inten-
tional but subconscious process of operant conditioning.

Nevertheless there is a question whether the type of color stabilization
depends on initial commutation of EEG frequency bands with the components
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of RGB model; also whether it changes the pattern of EEG stabilization if
that commutation schema is reversed.

The authors selected subjects 2 and 6 from “Orange-like” group and
subjects 8 and 13 from “Green-like” group to repeat the experiment with
reversed alpha and theta bands commutation with RGB model components:
“alpha—R” and “theta—G” instead, which is the opposite composition used
in Experiment 1.

Table 4 shows that all four subjects kept style of color modulation on
the computer screen in Experiment 2 during NF procedure, despite the re-
versed alpha and theta connection with RGB controller. However, within
given color shade, the concrete RGB codes differ slightly between Experi-
ment 1 and 2 (Table 4). The question is whether these differentials are casual
or not. More precisely these distinctions can be considered in a 3-D RGB
space separately for the RE and NF conditions (Figure 3). The 3-D distances
between RGB codes in the 1st and 2nd experiments during RE condition can
serve as an incidental level of differences.

Figure 2. Group averaged changes of RGB codes (means ± SEM) during NF and MK con-
ditions in comparison with RE condition. R(Th), G(Al) and B(Bt)—note the RGB code
components driven by EEG rhythms (Th = theta, Al = alpha and Bt = beta). (See Color Plate
VI at end of issue.)
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Figure 3 shows that the differences between the results of Experiments 1
and 2 for the same subject are appreciably higher than incidental. And these
differences are more expressed for the subjects from “Green-like” group.
However, those differences are much greater between individuals from dif-
ferent color groups (“green” and “orange”), noted in Figure 3 as average
value for all between individuals combinations (av_ID). Thus, at any circuit
of switching of EEG rhythms with RGB components each person shows the

Table 4. Average RGB codes, managed by EEG spectral futures in NF conditions
compared to RE and MK conditions in Experiment 2 after commutation schema
between EEG spectral features and RGB components was changed (see notations in
text)*

 Experiment 2  (Alpha  and Theta  reversed for RGB)   Experiment 1   

Sub.   N%     R   

(Al)   
G   

(Th)   
B   

(Bt)   
N%      R   

(Al)   
G   

(Th)   
B   

(Bt)   
N%      R   

(Th)   
G   
( Al)   

B   

(Bt)   

2   56   118   131   116   37   234   124   84   39   243   94   53   

6   63   133   123   119   43   194   107   56   42   241   88   38   

8   58   131   123   126   51   92   172   88   48   39   187   43   

13   47   125   127   117   56   119   153   97   69   51   170   83   

  
*See Color Plate VII at end of issue.

Figure 3. Individual differences between the results of Experiment 1 and 2 for RE and NF
conditions and average level differences (av_ID) of between individual from different “color”
groups. (See Color Plate VIII at end of issue.)
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same individual tendency in unconscious preference of color during NF training
(Table 3).

The most important fact is in order to keep this RGB pattern in Experi-
ment 2 without principal deviations the considerable changes should take
place in EEG pattern. This is illustrated by individual EEG spectra in two
experiments. A typical realization of the average EEG spectra for Experi-
ments 1 and 2 during RE and MK conditions are presented in Figure 4. FFT-
based PSD estimates for the signals obtained by concatenating the EEG
epochs belonged to the greatest cluster of EEG subtraction spectra in NF and
MK conditions separately for 1st and 2nd experiments (Figure 4).

As can be seen in Figure 4, there are principal differences between EEG
spectra during the same NF procedure in Experiments 1 and 2. These significances
reflect greater alpha amplitudes and smaller theta amplitudes in subject’s
EEG during NF procedure in first experiment and all on the contrary in
second one.

Therefore in general for Experiments 1 and 2 the phenomenon that 5–6
2-min sessions of color mediated unconscious operant training of EEG activ-
ity are sufficient to produce profound changes in a specific EEG frequency
of individuals assessed objectively. The participants were able to selectively
learn to modify their EEG activity by means of unconscious neurofeedback
regulation. The second side of this phenomenon is objectively indicated in
the ability of color to serve as subconscious reinforcement factor.

The fact that the 3 subjects (1, 4, and 9) failed to exhibit directional
changes of color during NF condition when comparing to RE and MK con-

Figure 4. Average FFT-based PSD estimates for EEG epochs belonged to the greatest clus-
ter of subtraction spectra in RE and NF conditions for subject #8.
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ditions may be accounted for by the particular methodology used. Maybe, for
instance, most comfortable tint for these three subjects was gray color. Thus,
it was nothing to change for these participants because the gray color was
adapted to starting EEG conditions.

DISCUSSION

Profound technological changes are sometimes caused by events initially con-
sidered to be completely irrelevant. Surprisingly, the first system of a neuro-
feedback was based on the color signal system. In 1971 Barry Sterman, who
first describe the sensory-motor EEG rhythms (SMR), wired up his first human
subject to a neurofeedback instrument. This unit was nothing more than a
simple black electronic box with two lights on it, red and green. When the
subject produced too much SMR the green light came on. When the subject
was not in that range, a red light came on. So, the green light acted in Stern’s
experiments as the reinforcement reward because the user should keep the
green color as long as possible during the training session according to the
previous instruction (Sterman, 1972).

At the same time, according to the authors’ everyday experience and
experimental evaluations based on Luscher Color Test (Kertzman, 2003;
Picco & Dzindolet, 1994), people favor green and blue when they crave
peace and comfort. Probably the double combination of reinforcement re-
wards in Sterman’s experiment of operant conditioning of SMR rhythms has
made the first procedures of neurofeedback especially effective. Occasionally
in these experiments outstanding results on therapy of epilepsy with the help
of training SMR were received (Sterman, 1972). It was the first sure step of
neurofeedback to many following clinical applications and for the improving
of cortical processes in healthy individuals (for the review, see Sterman,
1996).

However, it is much more important in the authors’ opinion that with
discovering of the operant conditioning of the EEG patterns, the new para-
digm in Neuroscience has been discovered. No one guessed the human brain’s
ability to express inner intentions out of natural brain outputs, nerves, and
muscles. Even classical biofeedback with autonomic functions demonstrates
the natural way of nervous circuits from brain through nerves to autonomic
organs. It appeared that the brain can learn to operate with patterns of the
cortical electric activity. It is a real opportunity for the person to transfer his
internal intentions to outside environment without means of nerves and muscles,
but only with the cooperation of EEG with BCI.
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However, to achieve real progress in this area, it is necessary to study
neurophysiologic mechanisms of operant conditioning of the EEG rhythms.
Basically, it is rather obvious that the self-regulation of a physiological pa-
rameter is acquired according to operant conditioning principles. The question
is which psychophysiological mechanisms would be involved in the acquisi-
tion of self-regulation of physiological parameters like EEG patterns in the
frame of neurofeedback procedure?

In the case of biofeedback, it was suggested that participants consciously
have to “perceive” a physiological function, like a heart rate, in order to
control one (Brener, 1982). It becomes possible by presenting external feed-
back of the function’s parameter as visual or acoustical signaling during
internal sensations evoked by self-regulation of this parameter. The coinci-
dences between events in external signaling and internal sensations during
NF training lead to the creating of a mental “response image.” Following
Brener’s hypothesis, the existence of acquired perceptible mental states or
internal “response image” whose voluntary repeated activation leads to the
production of the learned changes in the autonomic functions or EEG pat-
terns should be offered.

However, it is especially important to emphasize that participants of neuro-
feedback procedure usually did not create and did not perceive consciously
for those “response images” directly during operant conditioning. For ex-
ample, patients, who had positive experience in the self-control of their EEG
events, could explain their performance in detail, but only after they had
already acquired the self-regulation. Thus the conscious perception and con-
trol of the “response images” most probably follow its automatic creation
and not vice versa (Kotchoubey et al., 2002).

The major question arises: What are the neurophysiological mechanisms
of the automatic or unconscious creation of “response images” during neuro-
feedback?

In the authors’ opinion, the crucial process in the operant conditioning
of the EEG pattern during NF, for example with color as rewarding signal,
creates the specific quasi-stationary neuronal assembles or neuronal nets that
can generate the EEG pattern that evokes most preferable color shades in NF
procedure. The authors’ previous findings showed that EEG can be consider
a sequence of quasi-stationary patterns (Kaplan et al., 1999, 2001; Kaplan &
Shishkin, 2000, 2001) particularly in a form of limited spectral patterns (Kaplan
et al., 1998; Fingelkurts & Kaplan, 2003; Fingelkurts et al., 2003).

Taken together these findings, coupled with the new data, suggest the
neurophysiologic mechanism of EEG conditioning in classical terms: correct
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behavior, discriminative, and rewarding stimuli. In BCI paradigm presented
in this article, during display of the variety of color shade on the screen, as
discriminative stimuli, those EEG patterns reinforced as correct behavior,
which evoked only the most preferable color shade, as a rewarding stimulus.
Apparently, in case of color-based BCI the shades of color are simultaneously
discriminative and rewarding stimuli per se. And consequently they do not
demand participation of consciousness in NF procedure.

Thus, the positive reinforcement by color shade automatically leads to a
more frequent occurrence of an individual’s correct behavior in the form of
“correct” EEG patterns that are followed by comfortable color shades. On
the contrary, the negative reinforcement of uncomfortable colors results in
rare occurrence or disappearance of corresponding EEG patterns. This auto-
matic procedure has good convergence because of rather limited repertoire of
EEG pattern (Kaplan et al., 1998, 1999; Fingelkurtz & Kaplan, 2003). The
authors’ conception of automatic enumeration of EEG patterns or “EEG pat-
tern selection” during NF procedure can be extended to the whole behavior
in case of biofeedback. Indeed, they proposed earlier that described quasi-
stationary EEG patterns in general cases reflect some kind of metastable
brain states in different time and spatial scales (Kaplan & Shishkin, 2000).
The same conceptions are stated by other investigators (Friston, 2001; Lehmann,
1998). Thus, there are objective neurophysiological prerequisites to suggest
that EEG pattern selection or more deeply, neuronal ensembles selection mecha-
nism lies in the basis of behavioral operant conditioning in neurofeedmack
training. Lacroix and Gowen (1981) also supposed that limited patterns of
different cognitive or behavioral strategies from the existing behavior reper-
toire is tested during neurofeedback until an aimed-for strategy for self-regu-
lation is reached (Lacrous, 1981).

In common sense, the neuronal ensembles activity and corresponding
EEG patterns selected by rewarding are the neuronal codes or models of
significant external events and simultaneously are compact programs to man-
age external behavior. It is commonly accepted that people form mental models
of tasks and external objects and these models are used to manage behavior
as the two-side interface between inner intentions and external reality (Norman,
1993). These codes can be considered as preformed “macros” for the opera-
tion in perceptual and motor space. For example, the internal representations
of movements are some kind of motor macros, stored possibly in the cerebel-
lum (Ito, 2002).

The authors have assumed that in a course of BCI procedure a new kind
of macros is developed according new output of brain actions. In particular,
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new cortical ensembles are created as macros that operate construction of
corresponding EEG pattern for management of color shade on the display.

CONCLUSION

The authors have taken advantage of an old idea (for review see Luscher,
1983) about the existence of profound influence of color on human mental
state for developing the BCI system with the active feedback loop without
any conscious control. The BCI system in the present case not only passively
“reads” the individual’s EEG but also automatically reconstructs this ongoing
EEG by selecting those patterns that can serve as some kind of “macros” for
the management of comfortable color reality in the frame of BCI circuit.
These findings confirm the authors’ hypothesis that color signaling does have
unconscious reinforcement effects in the NF paradigm and color induced
EEG patterns can be considered as a managing signal for BCI systems such
as indicating the emotional state of individuals without verbalizing one. It
has allowed the authors to put forward the conception of automatic selection
of quasi-stable cortical neuron nets, as one of the most probable neurophysi-
ological mechanism of unconscious EEG operant conditioning.

The authors hope that the further optimization of the unconscious BCI
training will provide tools for participants optimally to manage their cogni-
tive and emotional resources by automatic self-regulation. It seems that we
may be well on the eve of new changes in human–computer interaction, and
these changes will be brought about by the recent development in the re-
search methods of neuroscience. One of the actual spheres of share is so-
called adaptive automation with the main aim to optimize Human–Machine
cooperation in high workload situations (Prinzel, 2003). This sphere is still in
a conceptual stage and a number of research issues still need to be addressed
before widespread acceptance is possible.
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