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Abstract: On the basis of three different experiments: oddball task (visual, 
auditory and audio-visual stimuli), modified Sternberg’s and multistage memory 
tasks, it was shown that: a) there was not a single typical spectral pattern type that 
would characterized the majority of the trials; b) the total number of the different 
spectral pattern types was limited; c) different spectral pattern types had different 
importance to the brain - their occurrence was less or more probable; d) the total 
number and the number of the most probable spectral pattern types was dependent 
on the functional brain state; e) actual spectral pattern variability during rest with 
closed eyes was relatively high (around 65% from the maximum possible rate), 
but significantly less than stochastic spectral pattern variability. It is suggested 
that identical sensory events can potentially trigger a limited number of several 
different alternative reaction patterns in EEG/MEG, depending on the situational 
context. 
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INTODUCTION 

 

Recent research emphasizes that cognition is not stimulus driven in a reflex-like manner, but is 

to a large degree based on expectations derived from previous experience, and on generalized 

knowledge stored in the architecture of cortical and subcortical networks (see reviews, König 

& Luksch, 1998; Alexandrov, 1999; Engel et al., 2001).  

One group of evidences for this came from single-trial studies. Single-trial analysis 

showed that cortical activity evoked by sensory stimulation is extremely variable. This has 

been shown for both single units (Gur et al., 1997) and macro-level (evoked potentials) (for 
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review, see Childers et al., 1987). Such single-trial variability is commonly explained by a 

model in which random ongoing background activity is linearly combined with a stereotyped 

evoked response (ERP) (Dawson, 1954; McGillem & Aunon, 1987; Arieli et al., 1996). 

Nevertheless, several reports have shown that ERPs are neither stable nor wholly independent 

of the “background” EEG (Basar, 1980; Jansen & Brandt, 1991), and therefore, the response 

of the brain to stimuli is not fully captured in the ERPs (Makeig, 1993). Moreover, there are 

evidences that post-stimulus ERPs are not sums of a sequence of brief fixed-latency, fixed-

polarity potential events, as often assumed, but originate from the phase resetting of ongoing 

EEG activity. This was shown for auditory (Sayers, 1974) and visually (Makeig et al., 2002) 

evoked responses. Kisley & Gerstein (1999) also reported that “the ongoing EEG activity was 

found to modulate both amplitude and shape (including latency) of evoked local field 

potentials and evoked unit activity in a manner not predicted by linear superposition of 

background activity and a stereotyped evoked response”.  

The brain often does not respond in the same way to repeated stimuli, even though 

cortical neurons are able to respond with remarkable temporal accuracy (Mainen & Sejnowski, 

1995). Hence, variability of general brain state can lead to variability of the so-called 

“repeatable” response (for the review, see Coenen, 1995).  

Taken together, these findings suggest that induced activity in the cortex and the 

resulting behavioral responses exhibit a large variability to repeated presentations of the same 

stimulus. In this context it is interesting and important to study the degree of diversity of 

induced brain activity during the same and different functional states and/or experimental 

tasks. Thus, several major questions arise: Is the number of induced brain activity classes 

infinite or limited? If it is limited – then in which range? Do all induced brain activity classes 

have the same importance? Is the number of induced brain activity classes dependent of 

functional state? In order to face the questions posed above, we assessed in this paper the 

induced brain activity classes by means of the adaptive classification technique for short-term 

spectra of spontaneous and task related EEG/MEG (Kaplan et al., 1999, Fingelkurts et al., 

2003a). Later this technique was applied for single-trial analysis (Fingelkurts et al., 2002; 

Fingelkurts et al., 2003b, in preparation). From the stimulus concept viewpoint, a post-

stimulus EEG interval contains stimulus context information rather than merely the physical, 

static features of the stimulus (for the review, see Näätänen & Winkler, 1999). Hence, the 

initial access to a cortical representation might be reflected in evoked potentials, whereas 

induced post-stimulus activity may mirror processes related to active memory in reverberating 

cell assemblies following their stimulus-triggered initial activation (Pivermuller et al., 1999). 
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Some researchers refer to long, slow induced effects accompanying higher cognitive 

processing (Kutas & Hillyard, 1980). Thus, the available experimental data suggests that in the 

post-stimulus interval a unitary sensory stimulus representation of the full stimulus event is 

completely formed. In connection to this, it seems reasonable to examine the post-stimulus 

EEG/MEG intervals (free from the direct influences of ERP and/or event-related 

desynchronization -ERD-/event-related synchronization -ERS- effects).  

However, the identification of components with very long latencies (more than 400 ms) 

is technically difficult, because their effects become submerged in the ongoing EEG/MEG 

field complex. At the same time, estimations of short-term spectral patterns (SP) – that are 

induced by stimulus events and based on Short-Time FFT – provide a sufficient measure to 

EEG/MEG patterns with long latencies (Fingelkurts et al., 2002; Fingelkurts et al., 2003b, in 

submission). Using the single-trial classification technique, the dependence between the 

probability of occurrence of induced SPs of a particular type which reflect ‘internal’ events 

and repetitive ‘external’ events – such as the presentation of a stimulus – is estimated. In this 

framework, each post-stimulus interval is represented by a particular type of SP. 

In the present study, complex stimuli were used in order to assess the activity of high-

level sensory neurons (Touryan & Dan, 2001). Moreover, in two experiments (see Methods 

section) complex stimuli consisted of natural stimuli (words and biological faces) which are 

defined as the stimuli that are behaviorally relevant and are found within the human’s sensory 

environment (Touryan & Dan, 2001). It is suggested that because sensory circuits evolve and 

develop in the natural environment, they may be specifically tuned for efficient coding of 

natural stimuli (Olshausen & Field, 1996; Nelken et al., 1999).  

As the frame hypothesis of the present paper, the variability of spectral patterns (SP) 

induced by the same stimuli reflects the variability of the cognitive context which comprises 

the changes in the functional brain state, dynamics of ongoing EEG activity and changes in the 

immediate environment (see review, Engel et al., 2001). It was supposed that by using the 

adaptive classification technique (Kaplan et al., 1999; Fingelkurts et al., 2003a), it may be 

possible to detect the systematic rules underlying the SP variability. Two main paradigms: 

oddball task (for visual, auditory and audio-visual stimulus modalities) and memory task 

(multistage memory task and modified Sternberg’s memory task) were chosen to study the 

functional variability of short-term SPs. Hence, the aim of this paper was to investigate the 

regularities of the variability of the SPs during the different brain functional states/tasks: a) to 

identify the number of SP types, b) to estimate the probability of each SP type, c) to study the 

dependence between the number of SP types and the brain states/tasks. 
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METHODS  

 

General aspects 

We tested the above hypothesis by classifying the SPs which characterize different functional 

states and post-stimulus single-trial EEG/MEG activity induced by complex/natural stimuli. 

Three experiments were carried out. 

 

First experiment (see details in Fingelkurts et al., 2003c) 

306-channel MEG was recorded for seven healthy, right-handed adult subjects (mean age 28) 

during the auditory, visual and audio-visual stimulation (talking face) using an oddball task.  

The stimuli consisted of meaningless disyllables (vowel-consonant-vowel) uttered by a 

female speaker. Stimulus sequences consisted of frequent (p = 0.85) congruent stimuli 

(standards) and infrequent deviant congruent (p = 0.05) and incongruent (p = 0.05) stimuli for 

audio-visual stimulation. Target congruent stimuli (p = 0.05) were presented to be able to 

check that subjects were consciously attending to the stimuli. The visual stimulation contained 

only the visual parts of these stimuli and auditory stimulation contained only the auditory 

parts. 

The magnetoencephalogram (MEG) were recorded continuously in a magnetically 

shielded room with a 306-channel whole-head device. The data were digitized at 300 Hz. The 

passband of the MEG recordings was 0.06-100 Hz. About 100 responses of the subjects to 

each deviant stimulus and about 2000 responses to standard stimuli were collected. MEG 

epochs containing artifacts due to eye blinks, significant muscle activity, or movements were 

automatically rejected. The presence of an adequate signal was determined by visually 

checking each raw signal on the computer screen after automatic artifact rejection. 

Gradiometer signals from 64 MEG locations which roughly correspond to the extended EEG 

10-20 International system: AF7/8, AF3/4 (4 MEG locations), AFz, F9/10, F7/8, Fz, F5/6, F3/4, 

FT9/10, FT7/8, FC5/6, FC3/4, T5/6 (4 MEG locations), T3/4 (4 MEG locations), CP5/6, CP3/4, CP1/2, 

CPz (2 MEG locations), C5/6, Cz (2 MEG locations), C3/4, C1/2, Pz (2 MEG locations), P5/6, 

P3/4, P1/2, Oz (2 MEG locations), O1/2 (6 MEG locations) were analyzed with a converted 

sampling rate of 128 Hz.  

Prior to the spectral analysis, each MEG sequence (corresponding to different stimulus 

conditions) was bandpass filtered in the 3-30 frequency range. This frequency range was 
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chosen because several studies have indicated that approximately 98% of the energy of human 

biomagneitc field lies between 0 and 30 Hz (Thatcher, 2001).  

In the present study we examined post-stimulus MEG data (still face, no sound), which 

is assumed not to be influenced by any artifact of the stimulus-events themselves. Categorized 

data (post-stimulus intervals) were extracted with respect the preceding stimulus (belonging to 

post-standard, or post-deviant-congruent, or post-deviant-incongruent intervals). The output of 

this procedure was sequence of concatenated MEG data, sorted stimulus-wise. Thus, the full 

MEG streams were split into 3 distinct segments for audio-visual conditions: AV(S) for 

standard stimuli, AV(C) for deviant congruents, and AV(I) for deviant incongruents; and into 

2 distinct segments for auditory and visual conditions: A(S), V(S) for standard stimuli, A(D), 

V(D) for deviant stimuli correspondently. 

 

Second experiment (see details in Fingelkurts et al., 2002) 

Twenty-channel EEG was recorded for nine healthy, right-handed adult subjects (aged 20-29) 

during the modified Sternberg’s memory task. The memory set (encoding) consisted of four 

auditorily presented stimuli. The frame set (retrieval) size was kept constant and consisted of 

one stimulus.  

The stimuli consisted of 24 auditory verbs (spoken with a female voice). A total of 192 

four-verb memory sets were constructed such that each of the verbs had to occur with equal 

frequency and only once in the same memory set. In 50% of the cases, the frame set verb was 

among the previously presented four-stimulus block. In total, there were 192 trials, which 

were presented to the subjects in a pseudorandomized order.  

The experiment was designed in such a way that it was possible to test resting, waiting, 

encoding, keeping-in-mind and identification short-term periods of memory task. 

Sixteen Ag/AgCl electrodes placed bilaterally on the subject's scalp using the 10/20 

system: F7/8, Fz, F3/4, Cz, C3/4, T3/4, T5/6, P3/4, O1/2 were selected for analysis. Vertical and 

horizontal electro-oculograms were recorded. All electrodes were referred to linked ears. The 

data was recorded using a sampling rate of 200 Hz. Due to the technical requirements of the 

tools to be later used for data processing EEG signal was re-sampled with a converted 

sampling rate of 128 Hz. 

Raw EEG signals were recorded with a frequency band of 0.3 to 70 Hz. The impedance 

of the recording electrodes was always below 5 kΩ. The presence of an adequate EEG signal 

was determined by visual inspection of the raw signal on the computer screen.   
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The full EEG streams were split into 5 distinct segments: R for resting period, W for 

waiting period, E for encoding period, K for keeping-in-mind period and I for identification 

period. Each EEG sequence (corresponding to different periods) was bandpass filtered in the 

3-15 frequency range. 

 

Third experiment (see details in Fingelkurts et al., 2003a) 

Eight-channel 1-min EEGs were recorded for twelve healthy, right-handed adult subjects 

(males, aged 19-26) during resting condition (closed eyes) and the multistage memory task 

(waiting, memorizing of the actual matrix object, and retention of the perceptual visual 

image). Each stage of the memory task was 20-sec duration.  

The visual stimuli presented in front of the subjects to memorize were non-verbalizable 

matrices composed of nine square elements presented on a matrix screen. The combination of 

the squares was selected quasi-randomly and presented on the screen for 20-sec by lighting 

with bottom-mounted red light diodes. Therefore, three distinct short-term (20-sec) periods 

were tested: before, during, and after the stimulus exposure. 

Eight Ag/AgCl electrodes were placed bilaterally on the subject's scalp using the 10/20 

system of electrode placement at F3/4, C3/4, P3/4, O1/2. Vertical and horizontal electro-

oculograms were recorded. All electrodes were referred to linked ears. Raw EEG signals were 

amplified and filtered in 0.5-30 frequency range and digitized at a sampling rate of 128 Hz by 

a 12-bit analog-to-digital converter. The impedance of the recording electrodes was always 

below 5 kΩ. The presence of an adequate EEG signal was determined by visual inspection of 

the raw signal on the computer screen. 

 

Data processing 

Individual power spectra were calculated in the range of 0.5–30 Hz with 0.5-Hz resolution (61 

values), using FFT with 2-sec Hanning window shifted by 50 samples (0.39-sec) for each 

selected EEG/MEG location. These values revealed the best results in disclosing temporal 

patterns from the signal (according to a previous study). In the case of MEG (first experiment) 

spectral analysis was performed separately for each of the two gradiometers. Then, the power 

spectra for the two gradiometers in each location were averaged separately. As a result, 

individual power spectra with a 0.5-Hz step were calculated for post-stimulus intervals in 

oddball task (first experiment), for each stage of the modified Sternberg’s memory task 

(second experiment), for three consecutive 20-sec fragments of the 1-min EEG during 
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multistage memory task and for 1-min EEG during resting conditions (third experiment). 

Individual spectral patterns (SP) were obtained for each subject and each EEG/MEG location 

separately. These SPs formed the multitude of the objects for further classification procedure. 

The parameters of variability within SPs during different functional states and 

experimental tasks were estimated at two stages. At the first stage, the adaptive classification 

of sequential single EEG/MEG spectra was performed in each EEG/MEG channel separately 

by reference to a set of standard SPs. Details of this procedure can be found in Fingelkurts et 

al., (2003a). This algorithm (SCAN-M software, Moscow State University; Kaplan et al., 

1999) results in m classes of SPs. Considering that a single EEG spectrum illustrates the 

particular integral dynamics of tens and hundreds of thousands of neurons in a given cortical 

area at a particular point in time (Dumermuth & Molinari, 1987), the SPs within each class can 

be considered effectively generated by the same dynamics, with the same driving force. 

Whereas SPs from different classes can be considered to have had different driving forces and 

therefore have been effectively generated by different dynamics (Manuca & Savit, 1996). 

Each SP can be labeled by the index of the class to which it belongs. Thus, a sequence of SP 

labels that represents the sequence of EEG/MEG patterns through which the system passes can 

be obtained. Each channel of each EEG/MEG was reduced to the sequences of classified SPs.  

At the second stage, the probability classification profiles (PCP) of SPs for each 

EEG/MEG location in each subject and for the group of subjects as a whole were calculated. 

An index was calculated as the number of cases of SP type as a percentage of the total amount 

of all SPs in any given EEG/MEG location.  

PCPs were averaged for each subject separately for each EEG/MEG location and 

condition (type of stimulation, stage of the memory task). After this, the data for each 

condition was averaged across those subjects which show similar results.  

Minor variations of the basic procedure for data analysis can be found in Fingelkurts et 

al., 2003b (in preparation) (for the first experiment), Fingelkurts et al., 2002 (for the second 

experiment) and in Fingelkurts et al., 2003a (for the third experiment). 

In order to reveal statistically significant changes in SPs variability in accordance with 

condition changes, Student t-test was used as only the difference between pairs of states was 

of interest. Statistical significance was assumed when p < .05. Results are reported as average 

values with standard deviations. For an appropriate estimation of 5% level of statistical 

significance of SP type distribution in PCPs, the numerical modeling was held (500 

independent trials). As a result of numerical modeling tests the stochastic level of SP type 

occurrence and upper/lower thresholds were calculated. These values are the estimation of the 
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maximally (by module) possible stochastic rate of SP type distribution in PCPs. Numerical 

modeling is a stochastic technique and is commonly applied as probing a complex process for 

non-random nature when the usage of other statistics is not possible. 

 

RESULTS 

 

Oddball task (first experiment) 

It has been supposed that the oddball task, which mainly assesses automatic brain functions, 

permits the obtaining of stereotype brain activity (brain response) induced by the same 

stimulus. However, in the present study, single-trial analysis revealed that the same stimulus 

induced different MEG patterns which altogether were characterized by a set of spectral 

pattern (SP) types (Fig. 1). Figure 1 presents the total and the most probable number of SP 

types for auditory, visual and audio-visual stimulation within the oddball task. It can be seen 

that there was no one typical SP type which would have characterized the majority of the 

trials, not even during the presentation of the standard stimuli. At the same time, the total 

number of the different SP types was limited (up to 14±0.9) and the sets of SPs were typical 

for each type of the stimuli and each type of stimulus modality (Fig. 1).  

The number of the total SP types for the deviant stimuli was lower than for the standard 

stimuli (p < .001) independently of the stimulus modality (Fig. 1, Table 1).   

Different SP types had different importance for the brain during the presentation of the 

same stimulus. Thus, several SP types were the most probable during the presentation of a 

particular type of the stimuli (Fig. 1). Moreover, the number of most probable SP types was 

larger for the deviants than for the standards (p < .001) (for auditory and audio-visual 

modalities). While for the visual modality the effect was the opposite (p < .001) (Fig. 1, Table 

1).   

All observed findings were quite similar across all tested MEG locations: coefficient of 

variation (CV = StD/Mean) was much less than 1 (Fig. 1). 
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Fig. 1. Total number and the number of the most probable spectral pattern types for 
the oddball task during standard (2000 trials) and deviant (100 trials) stimulation. 
Data averaged across 64 MEG locations for all subjects.  
A(S) – auditory standard stimuli; A(D) – auditory deviant stimuli; V(S) – visual 
standard stimuli; V(D) – visual deviant stimuli; AV(S) – audio-visual standard 
stimuli; AV(C) – audio-visual deviant congruent stimuli; AV(I) – audio-visual deviant 
incongruent stimuli; CV – coefficient of variation (standard deviation/mean) for MEG 
locations. 
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TABLE 1. Results of statistical analysis for data presented  
in figure 1. 
 

Total number of spectral pattern types 

Comparisons   Significance t 

A(S)xA(D) > p < .001 5.3 
V(S)xV(D) > p < .001 18.8 
AV(S)xAV(C) > p < .001 9.6 
AV(S)xAV(I) > p < .001 10.7 
AV(C)xAV(I)  n.s.  1.6 
 

The most probable spectral pattern types 

Comparisons   Significance t 
A(S)xA(D) < p < .001 5 
V(S)xV(D) > p < .001 8.1 
AV(S)xAV(C) < p < .001 4.2 
AV(S)xAV(I) < p < .001 7.2 
AV(C)xAV(I) < p < .01 3 
 

A(S) – auditory standard stimuli; A(D) – auditory deviant stimuli; 
V(S) – visual  standard stimuli; V(D) – visual deviant stimuli; 
AV(S) – audio-visual standard stimuli; AV(C) – audio-visual 
deviant congruent stimuli; AV(I) – audio-visual deviant incongruent 
stimuli; n.s. – non-significant; t – Student t-test 
 

Numerical experiment 

The most probable SPs were interpreted as the most “preferred oscillations” of the brain as a 

response to a particular stimulus. These, the most probable SPs were estimated as the 

main/dominant SP-peaks in the probability classification profile (PCP). To test if the existence 

of the peaks in PCPs were functionally dependent and not occasional, a numerical modeling 

was performed (500 independent trials – 5% level of statistical significance of SP type 

distribution in PCPs). As a result of numerical tests the stochastic level of SP type occurrence 

and upper/lower thresholds were calculated. These values are the estimation of the maximally 

(by module) possible stochastic rate of SP type distribution in PCPs. 

Figure 2 illustrates an example of actual data and numerical testing data for auditory 

standard stimuli. In the average PCP for 7 subjects for O1 MEG location, 12 different types of 

SPs were obtained. From actual PCP it can be seen that two SP types (labeled by 4 and 5) 

were the most probable among the others SPs – the values significantly exceeded (p < .05–p < 

.001) the stochastic level (Fig. 2, check PCPactual and PCPstoch). Theoretically, the stochastic 
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rate should be distributed equally among all 12 SP types within PCPstoch; and stochastic 

measure should be 100% / 12 = 8.33. Numerical modeling showed that stochastic measures 

fluctuate around value 8.33 and PCPstoch was characterized by the absence of any peaks (Fig. 

2). Also, the presence of SP types in PCPactual was significantly different from PCPstoch (p < 

.05–p < .001, except SP10). This means that the most probable SP types were not occasional 

and may have a functional nature. Thus, all SPs that the probability index (peaks in the PCP) 

significantly exceeded the upper threshold of the stochastic level of SP type occurrence were 

described as the most probable SPs. 

 

 

 

Fig. 2.  Example of the probability classification profiles for actual data and numerical 
testing data for auditory standard stimuli. Data averaged across 7 subjects for O1 
MEG location. The X-axis displays the labels of different types of spectral patterns 
(SP). The Y-axis displays the share of the corresponding SP type as a percentage of 
the total number of SPs. The continuous line represents the stochastic level of SP 
types occurrence in the probability classification profile modeled by means of a 
numerical test (500 independent trials). Dotted lines indicate upper/lower thresholds 
of the stochastic level. In the insertion, the theoretical stochastic measure (100% / 12 
types of SPs) is displayed. 

 

To test whether the SP types change along with the changing of the functional brain 

state, a second experiment using the modified Sternberg’s memory task was chosen. This task 

permits the examination of the brain activity induced by a single stimulus within short-time 

intervals. 
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Figure 3 displays the total number of SP types and the number of the most probable SP types 

during the modified Sternberg’s memory task. The design of this task permits to examine 

different stages of the memory task in chronological succession. The general results of this 

experiment reproduced the findings of the first experiment (see above). The brain activity in 

all single-trials (during each stage of the modified Sternberg’s memory task) was characterized 

not by one type of SPs, but by the set of SP types (up to 13) and only several of them (up to 5) 

were the most probable (Fig. 3).  

 

 

Fig. 3. Total number and the number of the most probable spectral pattern types for 
all single-trials (n = 192) during different stages of modified Sternberg’s memory 
task. Data averaged across 9 subjects and 16 EEG channels. Stages of the memory 
task presented in chronological order. 
R – resting conditions; W – waiting stage of the memory task; E – encoding stage of 
the memory task; K – keeping-in-mind stage of the memory task; I – identification 
stage of the memory task; CV – coefficient of variation (standard deviation/mean) for 
EEG channels. 
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number of the total and the most probable SP types. Thus, the total number of SP types was 

the largest for the resting and waiting conditions (p < .05), medium for the encoding and 

keeping-in-mind stages (p < .05) and the smallest for the identification stage of the memory 

task (Fig. 3, Table 2). Generally, the total number of SP types which characterized a particular 

brain state in all single-trials decreased along with the increase in functional loading. At the 

same time, the number of most probable SP types has a more complex relation with the 

different stages of the memory task (Fig. 3, Table 2). 

 

TABLE 2. Results of statistical analysis for data presented in figure 3. 

 
Total number of spectral pattern types 
Comparisons   Significance t   
RxW no diff.    
WxE > p < .05 2.7  
ExK no diff.    
KxI > p < .05 2.5  
RxE n.s.    
RxK n.s.    
RxI > p < .05 2.6  
WxK > p < .001 5.4  
WxI > p < .01 3.9  
ExI > p < .05 2.5   
 

The most probable spectral pattern types 
Compariso
ns   

Significanc
e t     

RxW > p < .05 2.5 (6 subjects from 9) 
WxE < p < .05 2.1 (3 subjects from 9) 

ExK 
no 
diff.   (all subjects) 

KxI > p < .05-.01 2.6-4.1 (6 subjects from 9) 
RxE < p < .05 2 (3 subjects from 9) 
 > p < .05 2.3 (3 subjects from 9) 
RxK < p < .05 2.4 (1 subject from 9) 
RxI > p < .05-.01 2.5-3.5 (5 subjects from 9) 
WxK < p < .05 2 (1 subject from 9) 
WxI > p < .05-.01 2-2.8 (6 subjects from 9) 
 < p < .01 2.8 (3 subjects from 9) 
ExI > p < .01 3.1-3.3 (3 subjects from 9) 
 

R – resting conditions; W – waiting stage of the memory task; E – encoding stage of 
the memory task; K – keeping-in-mind stage of the memory task; I – identification 
stage of the memory task; n.s. – non-significant; no diff. – no difference; t – Student 
t-test 
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The observed findings were similar for all tested EEG channels (see the coefficient of 

variation, Fig. 3). 

This experiment involves higher brain functions such as controlled encoding, 

identification, retention, and retrieval and these are greatly dependent on general functional 

state and context. However, the duration of the tested stages of the memory task were about 

one second. This duration is too short to test the variability of ongoing EEG activity during 

one functional state. Therefore a third experiment with 20-sec functional states was conducted.  

 

Multistage memory task (third experiment) 

Figure 4A illustrates the influence of different memory stages (20-sec of duration each) on the 

SP type sequences. It can be seen that in each memory stage the induced brain activity is 

characterized by a particular and limited set of SP types (Fig. 4A; Fig. 5: W, E, K). Moreover, 

the sets of SP types for three stages of the memory task were different (Fig. 4A). Note that the 

sets of SP types changed in the same moment when the memory task stage changes. 

  

Fig. 4. The sequence of spectral pattern types in O1 EEG channel for the three stages 
(20-sec duration each) of the memory task and for resting condition (eyes closed) 1-
min EEG. Different spectral pattern types are marked in different colors (the same 
spectral pattern types have the same color). Numbers indicate 149 spectral patterns 
calculated on 2-sec EEG epochs with 50 points shift (0.39-sec). W – waiting stage of 
the memory task; E – encoding stage of the memory task; K – keeping-in-mind stage 
of the memory task. 

 

Simultaneously, the total number of SP types was dependent on the functional state of 

the brain (resting condition, stages of memory task). Thus, the number of SP types was the 

largest for the resting condition (p < .05), medium for the waiting stage (p < .01) and the 
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smallest for the encoding and keeping-in-mind stages of the memory task (Fig. 5, Table 3). 

Like in the second experiment described above, the total number of SP types, which altogether 

characterized a particular brain state, decreased along with the increase in functional loading. 

Also as in the two experiments described above, several SP types (up to 5±0.1) were the most 

probable for each of the memory task stages (Fig. 5). Note that the increase in functional 

loading leads to an increase in the number of most probable SP types (p < .001, Table 3). 

These findings altogether were typical for all tested EEG channels (check coefficient of 

variation, Fig. 5).   

 

Fig. 5.  Total number and the number of the most probable spectral pattern types for 
multistage memory task (288 EEGs) and resting condition (96 EEGs). Data averaged 
across 12 subjects and 8 EEG channels. R – resting conditions; W – waiting stage of 
the memory task; E – encoding stage of the memory task; K – keeping-in-mind stage 
of the memory task; CV – coefficient of variation (standard deviation/mean) for EEG 
channels. 

 

One of the factors contributing to the SP variability observed above could be the 

"natural" fluctuations of ongoing EEG that characterize the basic activity of a particular brain 

region. Ongoing EEG activity may be considered as context for sensory processing and cannot 
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be ignored in exploration of cognitive processes (Arieli et al., 1996; Engel et al., 2001). 

Therefore, the SP variability of the ongoing EEG activity during resting condition (eyes 

closed) was considered.   

 

TABLE 3. Results of statistical analysis for data presented in figure 5. 

 
Total number of spectral pattern types 
Comparisons   Significance t  
RxW n.s.    
WxE > p < .01 3.8 
ExK no diff.    
RxE > p < .05 2.3 
RxK > p < .05 2.3 
WxK > p < .01 3.8  
 

The most probable spectral pattern types 
Comparisons   Significance t  
RxW < p < .001 4.8 
WxE no diff.    
ExK no diff.    
RxE < p < .001 4.8 
RxK < p < .001 4.8 
WxK no diff.       
 

R – resting conditions; W – waiting stage of the memory task; E – 
encoding stage of the memory task; K – keeping-in-mind stage of the 
memory task; n.s. – non-significant; no diff. – no difference; t – Student 
t-test 

 

Ongoing activity (third experiment) 

Figure 4B presents the sequence of SP types for the O1 channel in a 1-min EEG during the 

resting condition (eyes closed). It can be seen that the sequence of SPs is far from being 

homogenous. Even without any type of external stimulation induced by the design of the 

experiment the brain passes through variations of SP types. The total number of different SP 

types was limited (up to 13±0.6) (Fig. 5 (R)) and appears to be evenly distributed along 1-min 

EEG (Fig. 4B). At the same time, and as in the three experiments described above, the SPs had 

a different importance for the brain during the resting condition (closed eyes). Thus, the 

number of the most probable SP types was up to 4±0.5 (Fig. 5 (R)). These findings were 

similar across all tested EEG channels: coefficient of variation (CV = StD/Mean) was much 

less than 1 (Fig. 5 (R)).  
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There was a specific set of SPs for each EEG channel or small group of channels, since 

the number in SP types in all EEG channels taken together was substantially greater 

(21.2±0.7) than in each individual EEG channel (13±0.6) (p < .001, t = 25, Table 4). 

Moreover, if SP types that occurred in less than 2% of the cases were not taken into account, 

then this number decreases (p < .001, t = 27) to 12.5±0.6 (Table 4). This indicates that about 

50% of the SP types have a very low occurrence; i.e., not more than 2-3 times per 149 analysis 

epochs in a one-minute EEG! This causes up to 0.54±0.02 values for the relative incidence of 

the SP type change in the transition between neighboring EEG epochs of the same EEG (Table 

4). These values were considerably smaller than the relative rate of SP stochastic alternation in 

the actual EEG (0.83±0.01) (p < .001, t = 54). The relative rate of SP stochastic alternation 

was obtained by randomized mixing of SPs in each channel of the actual EEG (Fingelkurts et 

al., 2003a). 

 

TABLE 4. Mean (for 12 subjects) parameters of EEG spectral pattern 
type variability averaged for 8 EEG channels 
 
N  13±0.6 

Ns 21.2±0.7 
Ns(>2) 12.5±0.6 

RI 0.54±0.02 

SA 0.83±0.01 

 
N – the total number of spectral pattern types; Ns – the number of 
spectral pattern types for all EEG channels taken together; Ns(>2) – the 
same like Ns, but without spectral pattern types, which were presented in 
probability classification profiles less than in 2% cases; RI – the relative 
incidence of the spectral pattern type change; SA – the relative rate of 
spectral pattern stochastic alternation in the actual EEG; “±”– standard 
deviation 

 

DISCUSSION  

We investigated the trial-to-trial SP variability in the oddball task and the modified 

Sternberg’s memory task. Additionally, we assessed the state-dependent modulation of 

SP variability during a multistage memory task and resting condition. At the general 

level, perhaps the most important outcome of the analysis presented here is the finding 

that brain activity was characterized by a “family” of SPs induced by the same stimulus 

and that the set of SP types was limited (up to 14 types). And also that several SP types 
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from the “family” (up to 5 types) were the most probable and this probability was 

significantly different from the stochastic estimations. This suggests that the type of brain 

activity induced by the same stimulus can be different but not “any” type. This was 

observed for the auditory, visual and audiovisual modalities (standard and deviant 

stimuli) (Fig. 1) and may suggest the universality of the described effects.  

The total number and the number of the most probable SP types were dependent on 

the type and the modality of the stimuli (Fig. 1, Table 1). Probably top-down factors such 

as familiarity with the stimulus (Miller & Cohen, 2001) and cross-modal, task-specific 

influences (Heanny et al., 1989) modulate SP profiles. Indeed the data reviewed in Engel 

et al. (2001) indicates that top-down processing is associated with the modulation of the 

temporal structure of both ongoing and stimulus-induced activity. Hence, cognitive 

processing cannot be separated from the environment in which it occurs (Clancey, 1997).  

The findings of the present study (first experiment) and literature data suggest that 

stimulus events of long latency are intrinsically not reproducible. A cognitive act requires 

a prior state of readiness that expresses the existence of a goal, a preparation for motor 

action to position the sense organs, and selective sensitization of the sensory cortices. 

Their excitability has already been shaped by the past experience that is relevant to the 

goal and the expectancy of stimuli (Alexandrov, 1999; Freeman, 1999). This means that 

each moment of the present experience merges with the past experience. Therefore the 

past experience continually changes following the circular causality rule in which each 

perception concomitantly is the outcome of a preceding action and the condition for a 

following action (Freeman, 1999; Beer, 2000).  

In this framework it is believed that the high variability of SPs to repeated identical 

stimuli originates mainly in fluctuations of the subject's cognitive "context" defined by 

his/her attentive state, spontaneous thought process, and strategy to carry out the task, 

among others (Lutz et al., 2002). Also factors such as motivation, emotion and mood, 

including those related to the working memory, novelty-seeking and mental imagery 

modulate the neural impact of sensory events in a manner that they create a highly 

“edited” subjective version of the world (see review, Mesulam, 1998).  

It has been suggested that immediate context is reflected in ongoing EEG activity 

(see review, Engel et al., 2001). If so, then changes in the brain functional state should be 

partially accompanied by changes in SP types which describe this functional state. Also 

by assuming natural variability of the brain functional state, each single-trial of the same 

functional state should be characterized by different SP types. The second experiment 
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permits testing such supposition by using chronological changes of brain functional state 

within single-trial. Thus, single-trials of each stage of the memory task (corresponding to 

a particular functional state) were characterized by a set of SP types and some SP types 

were the most probable (Fig. 3). Additionally, in the present study it was shown that SP 

variability (the total number and the number of the most probable SP types) was 

dependent on the functional state (Fig. 3, Table 2). Thus, results of the second experiment 

support the viewpoint that the interplay of multiple internal and external influences on the 

brain determines a cognitive process. 

This interplay should be reflected in SP variability of one continues brain 

functional state. The third experiment of the present study showed that the brain keeps the 

state (waiting stage of the memory task) through a particular set of SPs (interim 

transiency) probably reflecting the fulfillment of micro-operations which are needed to 

achieve the main goal of this state (Fig. 4A, (W)). Temporal peculiarities of SP variability 

in EEG during different stages of the memory task are described elsewhere (Fingelkurts et 

al., 2003a). Studies at the neuronal level (Abeles et al., 1993) also showed that in a given 

behavioral condition there were usually many different patterns, each repeating several 

times, and not one (or a few) pattern repeating many times. Although the mechanisms 

underlying such variability are different, such examples suggest that variability of brain 

activity within one functional state may be the rule rather than the exception. 

When a perturbation is very strong or the goal is achieved (changes of the memory 

task stage, based on the design of the experiment), the brain shifts from the previous state 

(waiting stage) to a new state (encoding stage) with its own new set of SPs (Fig. 4A, (E)). 

And finally, changing of the encoding stage to keeping-in-mind stage also accompanied 

by changing of the sets of SPs (Fig. 4A, (K)). Perhaps the SP variability within one 

functional state reflects the poly-operational structure of brain activity. 

If ongoing EEG activity reflects ordered states of internally generated activity it 

should reflect the functional architecture of the networks: traces of the past history and 

the features of planned behavior.  Evidences come from Arieli and co-workers (Arieli et 

al., 1996; Tsodyks et al., 1999) who showed that even in the anesthetized state, ongoing 

brain activity is endowed with specific patterning that reflects the functional architecture 

of the underlying network. These findings suggest that ongoing brain activity contains 

structured information and therefore has an important role in cortical functioning 

(Tsodyks et al., 1999).  
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In the present study it was shown that the resting state (closed eyes, third 

experiment) was also characterized by a set of SP types and the relative incidence of the 

SP type change during the transition between neighboring EEG epochs was more than 

0.50 (Fig. 4B, Table 4). This is in a strongly overlapping (by 80%) 2-sec analysis epochs. 

At the same time, the relative incidence of the SP type change was significantly smaller 

than the relative rate of SP stochastic alternation (Table 4). The relative rate of SP 

stochastic alternation presents an estimation of the maximum possible rate of relative 

alteration in the type of SPs for a given EEG. Thus, actual SP variability during rest with 

closed eyes was relatively high (around 65% from the maximum possible rate), but 

significantly less than stochastic SP variability. This means that SP variability in the 

actual EEG reflects non-stochastic processes. The SP types during rest emerge, persist for 

some time, then disappear and are replaced by other SP types (Fig. 4B). This suggests that 

ongoing brain activity occurs in discontinuous steps and confirms that the cerebral cortex 

is continuously active in wakefulness. For details of the SP variability in ongoing EEG 

activity during resting conditions see (Fingelkurts et al., 2003a).  

High variability of the ongoing brain activity during resting condition can be 

explained by the fact that the brain is situated within a body. As a consequence, the 

performance of the brain can’t be reduced to “just” computing and extracting information 

from external stimuli (König & Luksch, 1998). In contrast, the brain needs to deal with 

the internal life providing and controlling vital processes of the organism and mental 

activity. This brain activity should be reflected in the resting EEG. Thus, it was shown 

that the alert eyes closed EEG state is very much an active state (Thatcher & John, 1981; 

Herscovitch, 1994).  

Besides the high SP variability (the existence of the sets of SP types) observed in 

the present study in all three experiments, it was shown that SP types are of different 

significance. Thus, 3-5 SP types (in each experiment) were the most probable when 

compared with the others (Fig. 1, 3, 5). It can be explained by the fact that an 

environment has a variable nature, and only subsets of input signals are relevant for the 

subject in the particular moment of time. Cognitive systems selectively stabilize 

representations that are important for the subject (Grossberg, 1980). This perhaps reflects 

the finite capacity of the brain facing the infinite complexity of the environment. 

Responses are directed further by information based on the probabilities of occurrence of 

each event. Thus, probability classification profiles obtained in the present study can be 



 21

considered as the measure of the variability of the actual environment the subject is 

submitted to.  

Together the results of the present study and the above considerations imply that 

identical sensory events can potentially trigger one of many different alternative 

reactions, depending on the peculiarities of the situational context (past experience, 

present needs and contemplated consequences) and the same goal can be reached through 

numerous means. Perhaps, this increases brain adaptability which is based on diversity, 

competition and choice rather than on stereotyped responses (see review, Mesulam 1998). 

From the biological viewpoint, brain is not primarily designed to give faithful 

representations of the environment, but to ensure survival of its bearer and its genes 

(König & Luksch, 1998). Thus, the categorization of input stimuli performed by the 

nervous system is actually dependent on the changing needs of the organism (Orban et al., 

1996). In functional terms, a “compromise” based on the saving of energy resources and 

on agreement between intrinsic goals and motivational states permits a cognitive system 

to select only the inputs that are meaningful to accomplish an actual organism’s goal 

(Fingelkurts et al., 2002). The various influences compete for stable, resonant states of the 

involved cell populations that would express a successful match of the input to the 

predicted constellation (Engel et al., 2001). The solution to the cognitive problem or task 

is therefore defined as the settling of the entire system into a metastable state of best fit 

(for the review, see Fingelkurts & Fingelkurts, 2001; Fingelkurts et al., 2002).  

Thus, to capture and understand the full complexity of brain performance, 

organisms should not be regarded as information processing devices, but rather as 

actively exploring subjects that adapt the neuronal analysis of their internal and external 

environment according to their needs and their life history (Engel et al., 2001). The 

operational synchrony (Kaplan et al., 1997) at different spatial-temporal scales and the 

metastability process with multivariability of its operational elements (Kaplan, 1999; 

Kaplan & Shishkin, 2000) and also, feedback interactions (Grossberg, 1980; Mesulam, 

1998; Engel et al., 2001) are the mechanisms supporting this processing (for the review 

see Fingelkurts & Fingelkurts, 2001). 

 

PRACTICAL ASPECTS 

It is important to note several aspects of the approach presented in this paper that are 

generally applicable. One significant advantage of being able to identify different types of 

SPs is that subsets of EEG/MEG segments sharing the same dynamics can be grouped 
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together thereby improving the statistics and one’s ability to model and to make 

predictions. Also ontologically (from the viewpoint of EEG/MEG phenomenology) it is 

more correct to obtain, for example, ERPs and ERD/ERS by averaging only those 

EEG/MEG segments which share the same dynamics. In that case, the “family” of the 

ERP and/or ERD/ERS types would characterize a particular stimulus. Comparisons of 

brain reactions to different stimuli should be done by comparing their ERPs and/or 

ERD/ERS families.  

Another practical advantage is that probability classification profiles of SPs can be 

used as a measure of the degree of the actual context variability. Also, the suggested 

approach permits the revealing of new response properties such as typicality and 

probability, and distinguishing them from each other (Fingelkurts et al., 2002; Fingelkurts 

et al., 2003b, in preparation). 
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