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Abstract

The short-term structure of electroencephalogram(EEG) spectral transformations during different brain functional
states(closedyopened eyes and memory task) was studied. It was shown that approximately 50% of spectral pattern
(SP) types occur not more than 2–3 times per 149 analysis epochs in a 1-min EEG. The remaining 50% of SP types
were the same for the different EEG channels, in all subjects and various brain functional states. Additionally, a high
incidence of the neighboring SP types in strongly overlapping(by 80%) 2-s analysis epochs of the EEG was shown.
The SP identified in a given epoch has only a limited predictive value on the SPs identified in the subsequent epochs.
The incidence effect was restricted by the limited SP set and by a 50% reduction in the functionally active SPs,
which resulted in a temporary stabilization of SPs in sequential combinations. The parameters of temporary
stabilization of SPs were significantly different from ‘random’ EEG which provides evidence of the non-occasional
character of stabilization of the main dynamic parameters of neuronal activity. Thus, the findings suggest that the
multi-variability of neuronal nets is discrete in time, and limited by the dynamics of the short quasi-stable brain
states.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cognitive neuroscience now leaves no or little
doubt that electroencephalogram(EEG) is closely
connected to brain dynamics, information process-
ing, and cognitive activity(Nunez, 2000; Bressler
and Keslo, 2001 also see review Fingelkurts and
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Fingelkurts, 2001). Neural oscillations, which
comprise EEG, exhibit large variability in both
amplitude and frequency and this variability has
quasi-stationary quantity(Stassen, 1980). Howev-
er, the dynamic nature of the fluctuations of brain
oscillations has remained unclear.
It was found that the power variability of the

main EEG spectral components for successive
short(5–10 s) EEG segments was in the range of
50–100%(Oken and Chiappa, 1988). It was also



24 A.A. Fingelkurts et al. / International Journal of Psychophysiology 47 (2003) 23–41

shown(see the review, Kaplan, 1998) that in the
phenomenon of the EEG spectral variability it is
not only the stochastic fluctuations of the EEG
parameters, but also the temporal structure of the
signal that is reflected. This may indicate that the
EEG spectral variability may befunctional (see
reviews Kaplan, 1998; Kaplan and Shishkin,
2000).
The most common approach for quantifying

brain oscillations is through a spectral analysis
(Florian and Pfurtscheller, 1995; Muthuswamy and
Thakor, 1998). However, conventional methods
assess the mean characteristics of the EEG power
spectra averaged out over extended periods of time
andyor broad frequency bands in order to obtain
statistically reliable characteristics. In that case,
averaging procedures resulting in ‘static’ picture
might not only mask the signal dynamic aspects,
but also give rise to ambiguous data interpretation
(Effern et al., 2000; Laskaris and Ioannides, 2001;
Fingelkurts et al., 2002).
In order to overcome the limitations of conven-

tional spectral analysis based on averaging proce-
dures and to reveal functional EEG spectral
variability the short-term spectral analysis was
introduced (Barlow, 1985; Jansen and Cheng,
1988).
Assuming that the duration of the minimal

stationary segment of an EEG is not usually more
than 2 s(Inouye et al., 1995) it is possible to get
a whole set of individual short-term spectra of
various types in accordance with the number of
stationary EEG segments. The parameters of the
relative presence of the individual EEG segments
of each type and the peculiarities of its alternation
in the analyzed EEG may provide more adequate
characteristics of the operational brain activity(see
the review Kaplan and Shishkin, 2000; Fingelkurts
et al., 2002).
In connection to this, for studying functional

variability of individual short-term spectral pat-
terns(SP) an adaptive classification technique was
developed. This technique was presented in
abstract form in Fingelkurts et al.(1998) and
published in Kaplan et al.(1999) (details of the
technique see in Appendix A). This technique uses
a universal standard SP set, which adapts to the
specifics of any given EEG.

The frame hypothesis of this paper is that the
regularities of short-term spectral transformations
reflect additional information on the fast functional
dynamics of brain information processing. It was
supposed that by using the adaptive classification
technique, it might be possible to detect the short-
term structure of the dynamics involved in proc-
essing information within the brain. Eight EEG
electrodes(the number sufficient to cover the main
cortical areas) were used to test the influence of
morpho-functional organization aspects on the
short-term structure of brain dynamics. A multi-
stage memory task made of gradually increasing
cognitive load (rest-condition-closed-eyes, rest-
condition-open-eyes, waiting-stimulus, stimulus-
memorizing, keeping-stimulus-image-in-mind)
was chosen to study the functional variability of
short-term SPs. Hence, the aim of this paper was
to investigate the regularities and structure of the
variability of the short-term EEG spectra and their
temporal group-sequencing during the different
brain functional states.

2. Methods

2.1. Subjects

Seventeen healthy, right-handed adult volunteers
(males, aged 19–26) participated in the experi-
ment. None of the subjects reported any visual
defects, neurological disorders, or was on medi-
cation. In addition, all of them have normal auto-
nomic (blood pressure and pulse rate) and
psychometric(Eysenck’s, Spielberg-Khanin’s and
Doskin’s scales) indices. All the subjects were
informed beforehand of the nature of the
experiments.
All of the subjects underwent the same experi-

ment with the same instructions twice. The interval
between initial testing and retesting was approxi-
mately 1–2 weeks. The EEG registrations began
at the same time(10:00 h) on both the first and
second registration sessions. All of the subjects
were aware that they were going to undergo the
same test twice with an interval between. Consent
was obtained from all subjects prior to the
experiment.
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2.2. Stimuli

The visual stimuli presented in front of the
subjects to memorize were non-verbalizable matri-
ces composed of nine square elements(1.5–1.5
cm ) presented on a matrix screen 6=6 squares2

in size, which was positioned 60–70 cm away
from the subject’s eyes. The combination of the
squares was selected quasi-randomly and presented
on the screen for 20 s by lighting with bottom-
mounted red light diodes. During the course of the
experiment, illumination within the laboratory box
was constant at such a level that allowed the
subject to reliably distinguish the matrix squares
without lighting.

2.3. Procedure

After the electrodes were placed on the subject’s
head and the instrument calibrated, the subject was
seated in a comfortable chair in a registration room
and the procedure of the experiment was explained.
To reduce muscular artifacts in the EEG signal,
the subject was instructed to assume a comfortable
position and to avoid movement. The subject was
asked to look at the screen and to avoid unneces-
sary eye movements. The behavior of the subject
was observed on a TV monitor throughout the
experiment.
The protocol of the experiment was as follows:

immediately preceding the EEG recording, the
subject was given a command ‘Attention to the
screen’ with the instruction to remember the matrix
pattern to be presented. Between 30 and 50 s after
the command was given, a random combination
of 9 matrix elements was exposed for 20 s. For
the following 20 s with the lighting switched off,
the subject was required to sit motionless with
open eyes trying to keep in mind the image of the
square composition presented in that matrix. The
subject was then asked to reproduce the pattern by
touching squares in the matrix with a special
pencil. Each touch switched on the lighting of the
corresponding square element.
Two minutes after the reproduction was finished,

a completely new combination of squares was
presented. A total of 12 matrix compositions were
presented to each subject. Between the signal

presentations, four control trials were randomly
introduced. In the control trials, the EEG was also
recorded, but the command ‘Attention to the
screen’ was not followed by the expected matrix
presentation.
Therefore, three distinct short-term(20 s) per-

iods were tested: waiting, memorizing of the actual
matrix object, and retention of the perceptual visual
image. In addition, four EEG registrations were
made for eyes closed and eyes opened(rest con-
ditions) for each subject.
EEGs were recorded for 12 subjects during the

memory task, control condition, and rest conditions
(eyes closedyopen). For 5 more subjects EEGs
were registered during special task where the
subjects observed visual objects without being
required to memorize them(Section 3).

2.4. Recording

Eight AgyAgCl electrodes(Siemens–Elema)
were placed bilaterally on the subject’s scalp using
the 10y20 system of electrode placement at F3,
F4, C3, C4, P3, P4, O1, O2. Additionally, two
EOG electrodes were put on the outer side of the
eyes. All electrodes were referred to linked ears,
which also served as the ground electrodes.
Raw EEG signals were amplified and filtered

(0.5–30 Hz) using the Medicor EEG and digitized
at a sampling rate of 128 Hz by a 12-bit analog-
to-digital converter. The impedance of recording
electrodes was monitored for each subject and it
was always below 5 kV. The presence of an
adequate EEG signal was determined by visual
inspection of the raw signal on the computer
screen.
Instructions designed to minimize movement

and relax jaw muscles resulted in suppressing the
myogram class of artifact to the point that the
high-frequency spectrum was not significantly
affected. Cardiac interference at low frequencies
was also found to be minimal, with no spectral
peak detection at the heartbeat frequency of
approximately 1 Hz, or its harmonics. Constant
visual EEG monitoring allowed for selection of
only those artifact-free EEG recordings for
analysis.
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To estimate the effects of various brain states
646 artifact-free 1-min EEGs were recorded for
two sessions in rest conditions(eyes closedy
opened), control conditions, and during the mem-
ory task (before, during, and after the stimulus
exposure—three periods, 20 s each).

2.5. Data processing

The EEG spectral analysis conducted by means
of Fast Fourier Transform with Hanning’s window
used a sliding 2 s analysis window that was
shifting by 50 sample points(390 ms) between
adjacent windows. These values revealed the best
results in disclosing temporal patterns from the
signal (according to a special study). Each indi-
vidual short-term power spectrum was calculated
with a frequency resolution of 0.5 Hz. Thus, each
individual power spectrum had 61 values for a
0.5–30 frequency range.
As a result, 50 individual power spectra with a

0.5 Hz step were calculated for three consecutive
20-s fragments of the 1-min EEG recordings. The
total number of individual SPs for each channel
of 1-min EEG was 149. These SPs formed the
multitude of the objects for further classification
procedure.
The parameters of variability within the EEG

SPs during rest conditions and the memory task
were estimated at two stages. At the first stage,
the adaptive classification of sequential single EEG
spectra was performed in each EEG channel sep-
arately by reference to a set of 32 standard SPs.
Details of this procedure, published firstly in Rus-
sian(Kaplan et al., 1999), are contained in Appen-
dix A. It is worth noting here however, that this
way of SP classification makes it possible to
identify up to 96% of individual single spectra in
the initial EEG. Thus, each channel of each EEG
was reduced to the sequences of classified individ-
ual SPs.
At the second stage, the classification profiles

of SPs for each channel of each EEG from each
subject and for the group of subjects as a whole
were calculated. An index was calculated as the
number of cases of SP type as a percentage of the
total amount of all SPs in any given EEG channel.

Firstly, the classification profiles were averaged
for each subject separately for each EEG channel
and condition. After this, the data for each condi-
tion was averaged across all subjects separately
for the first and second sessions. Since there were
no significant differences in the results from first
and second sessions(see example at Fig. 3) the
entire data were combined for further analysis.
The analysis of variance for repeated measure-

ments was conducted to test the following inter-
action: the variability of the number of
non-classified spectra and the factor experimental
condition (eyes closed, eyes open, memory task).
In order to reveal statistically significant transfor-
mations of classification profiles and for testing
condition-specific effects, pairedt-test was used.
t-Test analysis was performed separately for each
type of SPs presented in classification profiles.
Correlation analysis was used to assess the test–
retest reliability per se(session 1 vs. session 2).
Only statistically significant P-values are
displayed.
As control for the neural origin of temporal

dynamics of SPs, the so-called surrogate data were
used which is commonly applied as probing a
signal for a non-random temporal structure(Ivanov
et al., 1996). Surrogate signals have identical
parameters with the original signals but do not
have temporal correlations(see Section 3, ‘random
EEG’).

3. Results

3.1. General characteristic of SPs distribution in
local EEGs

By using adaptive classification technology,
approximately 90–96% of EEG SPs(for different
subjects and EEG channels) were successfully
classified. The number of non-classified spectra
was less then 10% for all types of EEG(with
alpha rhythm, or without), for all EEG channels
and for all examined types of brain functional
states(rest conditions: closedyopened eyes, mem-
ory task and task without memorizing). Analysis
of the non-classified spectra showed that they were
characterized by polyrhythmically disorganized
andyor ‘noisy’ spectra(the peak is on 1 Hz with
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further asymptotic decrease of the power). This
means that the percentage of non-classified spectra
in the EEG recorded in the specified conditions
may be viewed as an index of the polyrhythmically
disorganized andyor ‘noisy’ activity. This percent-
age (not more than 10%) was dependent on the
EEG type, EEG channel and brain functional state.
Thus, variance analysis of the variability of the
number of non-classified spectra showed that this
parameter was significantly influenced by the fac-
tor of functional loading with the decrease in the
number of non-classified spectra during the mem-
ory task(F(1, 287)s7.98;P-0.001).
At the same time, distribution of the classified

SPs within the classification profiles demonstrated
particular peculiarities. It was shown that even
within the limits of 20 s EEG fragments, there is
a considerable transformation of the EEG segmen-
tal structure when compared across separate brain
functional states: eyes closed, eyes opening and
different stages of the memory task. This micro-
dynamics was expressed in percentage changes
(P-0.05–0.001 for different cases and EEG chan-
nels) of the particular combinations of individual
SPs(Fig. 1).
Thus, while eyes were closed, only about half

of the segments of the EEG were characterized by
the dominant monomodal(41%—SP types 2, 3)
or bimodal (10%—SP types 7, 8) peak in alpha
band. In most of the other cases, either the alpha
peak was expressed at the same extent as the peaks
of other frequency bands(8%—SP types 16, 28,
29, 31), or the spectral peaks in the band ofD–u
frequency (15%—SP types 21–25 and others)
were the most noticeable(Fig. 1a). The opening
of the eyes resulted in more than a twofold
decrease in the number of EEG segments with
high-amplitude alpha peak(P-0.001) and in the
increase of about the same number of segments
with dominant but less expressed in spectral power
D–u activity (P-0.005–0.001 for different EEG
channels) (Fig. 1a). The same effect continues to
develop from this later state to the ‘waiting’ stage,
and from this one to the ‘memorizing’ stage of the
memory task(Fig. 1a,b, compare closed eyes with
open eyes, then open eyes with the ‘waiting’ stage
of the memory task, and then ‘waiting’ with the
‘memorizing’ stages of the memory task). In con-

trast, the comparison of the three 20 s periods of
the EEG for the control condition where visual
object was expected but not presented(Section
2.3) showed no statistically significant differences.
Some topological specifics of the transforma-

tions in the EEG classification profiles were detect-
ed. The effects described above were first of all
typical for the occipital and parietal EEG channels,
less pronounced in the central EEG channels,
whereas there were no statistically significant
changes in EEG classification profiles for frontal
channels(Table 1). At the same time, the number
of D-rhythmical SPs in the frontal channels
decreased(P-0.01) during ‘memorizing’ and
‘keeping-in-mind’ of the visual image when com-
pared with the ‘waiting’ stage of the memory task
(Table 1).
How specific were the transformations described

above of the EEG classification profiles regarding
the task of visual object memorizing? Maybe these
effects are determined by alpha blockade when
focusing attention on the structural peculiarities of
the visual field. To test out this supposition, a
special test was carried out. The subject observed
visual objects without being required to memorize
them. The temporal diagram and all conditions of
visual presentation were identical to the main test,
the only exception being that the instruction for
the subject was different. He was asked to watch
the changes in the lighting brightness of the matrix
elements for 20 s and report the number of changes
20 s after the lighting was switched off. This task
required considerable attention from the subject,
since the brightness of the squares did not in fact
change during the whole course of the experiment
(the subject was not made aware of this). Trans-
formations of the EEG classification profiles while
the subject’s attention was directed to visual
objects ‘with memorizing’ and ‘without memoriz-
ing’ differed considerably(Tables 1 and 2). In the
second case, the general number of EEG classifi-
cation profile transformations during transition
from the ‘waiting’ stage to ‘observation’ of the
visual object decreased mainly at the expense of
alpha-rhythmical types of SPs(Table 2) when
compared with transition from ‘waiting’ to ‘mem-
orizing’ stage(Table 1).
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Fig. 1. Example of the pie diagrams and corresponding classification profiles(averaged for 12 subjects) during resting conditions
with openedyclosed eyes(ns96) (a) and the memory task(ns288) (b) for O2 EEG channel. At the pie diagrams the different
colors reflect the percentage of the different EEG SPs in classification profiles. The numbers indicate the labels of the standard SP.
TheX-axis displays the labels(numbers) of the standard SPs from 1 to 32. The main frequency peaks for each SP are: 1—8.5 Hz,
2—10 Hz, 3—11.5 Hz, 4—13 Hz, 5—14.5 Hz, 6—8–9 Hz, 7—9.5–10.5 Hz, 8—9.5–11.5 Hz, 9—8.5–11.5 Hz, 10—12.5–20.5
Hz, 11—4–8.5 Hz, 12—4–10.5 Hz, 13—5.5–10.5 Hz, 14—6.5–12.5 Hz, 15—2.5–8.5 Hz, 16—2.5–10.5 Hz, 17—2.5–12.5 Hz,
18—4 Hz, 19—5.5 Hz, 20—7 Hz, 21—3–6.5 Hz, 22—2.5–4 Hz, 23—2.5–3.5–5.5–9.5 Hz, 24—2.5–5.5 Hz, 25—2.5 Hz, 26—
2.5–20.5 Hz, 27—20.5 Hz, 28—2.5–4.5–8.5 Hz, 29—2.5–4.5–10.5 Hz, 30—2.5–10.5–16.5 Hz, 31—3–6.5–11 Hz, 32—2–6.5–
8.5–12.5 Hz. TheY-axis displays the share of the corresponding SPs in the percentage from the total number of the classified SPs.
A line graphic was chosen instead of a bar for the ease of comparison.(Note thatX-axis consists of 32 discrete values, all the in-
between values are meaningless.) EO—eyes opened; EC—eyes closed; I—the stage of the ‘waiting’ of the matrix visual object,
II—the stage of the ‘memorizing’ of the matrix visual object. *—P-0.01–0.001(for different SPs).

Analysis of the individual classification profiles
of SPs for each subject showed that there is
considerable similarity of the SP sets as presented
in different classification profiles. However, the

individual classification profiles differed from each
other by the percentage of particular SPs presented
within them. The most noticeable difference was
for ‘pure’ alpha-rhythmical SPs. According to this
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Table 1
Changes of the SP presentation(in the percentage from the total number of the classified SPs during 20 s(ns50)) in the classi-
fication profiles for comparison of the three stages of memory task(averaged for 12 subjects,ns288)

SP type 25 18 2, 3 7a 22 24 16 17 12a 28 23
Hz 2.5 4 10, 11.5 9.5–10.5 2.5–4 2.5–5.5 2.5–10.5 2.5–12.5 4–10.5 2.5–4.5–8.53–4–6–10
Rhythms D u a a D–u D–u D–a D–a u–a D–u–a D–u–u–a
Stages ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC

O1 x–– ≠≠– xx– ––– ––– xx– xx– ≠–x ≠≠–
O2 ––– ≠≠– xx– ≠≠– ≠≠– xx≠ xx– ≠–x ≠≠–
P3 ––– ≠≠– xx– –≠– ––– xx≠ xx– ≠–x ≠≠–
P4 ––– ≠≠– xx– ≠–– ≠–x xx≠ xx– ≠–x ≠≠–
C3 ––– ≠≠– xx– ––– ––– xx– ––– ≠–– ≠≠–
C4 xx– ≠≠– xx– ≠≠– ––– xx– ––– ≠–– ≠≠–
F3 xx– ––– ≠xx ––– ––x ––– ––– ––– ≠≠–
F4 xxx ––– –≠≠ ––– ––– ––– ––– ––– –––

≠—Statistically significant(P-0.05–P-0.001 for different channels) increase of SP presentation;x—statistically significant
(P-0.05–P-0.001 for different channels) decrease of SP presentation; ‘–’ —absence of statistically significant changes; A—
comparison of the ‘waiting’ and ‘memorizing’ stages of the memory task; B—comparison of the ‘waiting’ and ‘keeping-in-mind’
stages of the memory task; C—comparison of the ‘memorizing’ and ‘keeping-in-mind’ stages of the memory task.
Absence of the particular SPs.a

Table 2
Changes of the SP presentation(in the percentage from the total number of the classified SPs during 20 s(ns50)) in the classi-
fication profiles for comparison of the three stages for the task ‘attention without memorizing’(averaged for 5 subjects,ns70)

SP type 25 18 2, 3 7 22 24 16 17a 12 28 23
Hz 2.5 4 10, 11.5 9.5–10.5 2.5–4 2.5–5.5 2.5–10.5 2.5–12.5 4–10.5 2.5–4.5–8.5 2.5–3.5–5.5–9.5
Rhythms D u a a D–u D–u D–a D–a u–a D–u–a D–u–u–a
Stages ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC

O1 –≠– ≠–– ––– –x– ≠≠– ≠≠– ––– ––– –≠– ≠≠–
O2 –≠– –≠– –x– xx– ≠≠– –≠≠ ––– ––– –≠– ≠≠–
P3 ––– ≠–– ––– ––– ––– –≠– ––– ––– ––– –––
P4 ≠≠– ≠–– –x– ––– ––– –≠– ––– ––– ≠≠– –––
C3 ––– ––– –x– ––– ––– ––– x–– ––– ––– –≠–
C4 –≠– ––– –x– ––– –≠– ––– –x– ––– ––– –––
F3 –≠≠ ≠–– xx– –x– ≠–– –≠≠ –x– x–– ––– –≠–
F4 ––– ≠–– –x– ––– ––– ––– ––– ––– ––– –≠–

≠—Statistically significant(P-0.05–P-0.001 for different channels) increase of SP presentation;x—statistically significant
(P-0.05–P-0.001 for different channels) decrease of SP presentation; ‘–’—absence of statistically significant changes; A—
comparison of the ‘waiting’ and ‘observation’ stages of the task; B—comparison of the ‘waiting’ and ‘ rest-opened eyes’ stages of
the task; C—comparison of the ‘observation’ and ‘rest-opened eyes’ stages of the task.
Absence of the particular SPs.a

parameter of individual classification profiles the
subjects were assigned to two analysis subgroups:
subjects(ns8) with dominant alpha-rhythmical
SPs in their classification profiles and subjects
(ns4) without or with a minimal occurrence of
alpha-rhythmical SPs in their classification pro-
files. A visual inspection of the EEGs and a mean
spectral power analysis, calculated for the resting
period for these two subgroups confirmed this

division. Thus, classification profiles of the sub-
jects with high alpha-index were characterized by
a higher number of the ‘pure’ alpha-rhythmical
SPs andyor SPs, which mostly contain alpha com-
ponents(P-0.05–0.001 for different EEG chan-
nels) when compared with the subjects with low
alpha-index. Whereas classification profiles of the
subjects with low alpha-index were characterized
by more number of the ‘pure’D-, u-rhythmical
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Fig. 2. 100% stacked columns for the SP relative percentage, which was changed(black colour) during the comparison of the
averaged classification profiles for different functional states. 1—The comparison of the state ‘eyes closed’ with the state ‘eyes
opened’(ns96); 2—the comparison of the state ‘eyes opened’(ns96) with the ‘waiting’ period of the memory task(ns288);
3—the comparison of the ‘waiting’ period with the ‘memorising’ period of the memory task(ns288); 4—the comparison of the
‘memorising’ period with the ‘keeping-in-mind’ period of the memory task(ns288).

SPs andyor SPs, which mostly contain theta com-
ponents(P-0.05–0.001 for different EEG chan-
nels), when compared with the subjects with high
alpha-index.
Comparison of classification profiles for the

‘waiting’ and the ‘memorizing’ stages of the mem-
ory task revealed opposite behavior of the classi-
fication profile transformations for those subjects
with a high and low alpha-index. Thus, memoriz-
ing the visual matrix object resulted in an increased
number of ‘pure’D- andD–u-rhythmical SPs(P-
0.05–0.001 for different EEG channels) for the
subjects with high alpha-index, when compared
with the ‘waiting’ stage of the memory task. For
the subjects with low alpha-index, memorizing the
visual matrix object resulted in a decreased number
of the same SPs(P-0.05–0.001 for different EEG
channels) when compared with the ‘waiting’ stage
of the memory task.
The ‘mosaic’ dynamics of all the transforma-

tions described above was unexpected: they affect-
ed only 8–21% of EEG individual segments in
different brain functional states(Fig. 2)! Hence,
dominant types of SPs determine the total picture
of EEG spectral transformations only due to its
energetic predomination in total spectrum, but
during this, they do not absolutely characterize the

greater part of the individual segments of analyzed
EEG. The main part of EEG individual segments,
as has been shown, contributes constantly to the
EEG classification profile during changes in cog-
nitive loading.
What are the main peculiarities of the dynamic

variability of SP types?
It was shown that functional loading such as the

opening of eyes and a memory task caused an
increase(P-0.001) of the relative incidence of
the SP type change in the transition between
neighboring EEG epochs of the same EEG(Table
3). This means that the increased functional load-
ing leads to a more frequent changes in the type
of SPs. This is proved by the fact that the decrease
in functional loading(see the task ‘attention with-
out memorizing’) resulted in less frequent changes
in the type of SPs(P-0.001) when compared
with the memory task(Table 3). In addition, the
data for those subjects with high and low alpha-
index also demonstrate the same dependent rela-
tionship between the functional loading and the
incidence index(P-0.01) (Table 3, see the mem-
ory task foraq and ay). The incidence index
was largest(P-0.01) for subjects with a low
alpha-index.
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Table 3
The relative incidence of the SP type change for various EEG channels and different brain functional states(averaged for all
subjects)

EEG Eyes Eyes Memory Memory Memory ‘Attention
channels closed opened task task for task for without

(ns96) (ns96) (ns288) aq (ns192) ay (ns96) memorizing’
(ns70)

O1 0.52"0.02 0.56"0.02 0.59"0.05 0.58"0.06 0.62"0.08 0.51"0.02
O2 0.49"0.02 0.55"0.02 0.59"0.05 0.59"0.07 0.61"0.09 0.51"0.02
P3 0.54"0.02 0.58"0.02 0.60"0.05 0.59"0.07 0.62"0.08 0.52"0.02
P4 0.54"0.02 0.58"0.02 0.60"0.05 0.60"0.07 0.62"0.09 0.53"0.02
C3 0.56"0.02 0.59"0.02 0.60"0.05 0.60"0.06 0.62"0.07 0.56"0.01
C4 0.56"0.02 0.58"0.02 0.60"0.05 0.60"0.06 0.62"0.08 0.56"0.01
F3 0.56"0.02 0.58"0.02 0.60"0.05 0.60"0.06 0.62"0.08 0.56"0.01
F4 0.56"0.02 0.57"0.02 0.60"0.05 0.60"0.07 0.61"0.09 0.56"0.01

Mean 0.54"0.02 0.57"0.02 0.60"0.05 0.59"0.07 0.62"0.08 0.54"0.02

aq—Subjects with high alpha-index;ay—subjects with low alpha-index; ‘"’—mean error.

Table 4
The EEG SP types diversity for various EEG channels and different brain functional states(averaged for all subjects)

EEG Eyes Eyes Memory Memory Memory ‘Attention
channels closed opened task task for task for without

aq ay memorizing’

O1 34"1.4 39"1.5 38"0.5 40"0.7 34"0.6 41"2.2
O2 34"1.6 39"1.5 38"0.5 41"0.7 33"0.7 41"1.8
P3 38"1.2 39"1.5 37"0.5 39"0.7 32"0.6 44"2.3
P4 38"1.1 37"1.6 36"0.5 39"0.7 31"0.6 43"2.0
C3 39"1.3 36"1.3 36"0.4 38"0.6 32"0.5 49"1.3
C4 39"1.2 36"1.3 36"0.4 37"0.6 32"0.6 49"1.3
F3 38"1.3 35"1.2 35"0.4 37"0.7 31"0.6 50"1.3
F4 38"1.3 36"1.2 35"0.4 37"0.7 32"0.5 47"1.4

Mean 37.3"1.3 37.0"1.4 36.4"0.5 38.5"0.7 32.1"0.6 45.5"1.7

Ns 63"1.5 60"2.0 56"1.5 60"0.7 48"0.8 68"1.3

Ns()2) 36"1.1 33"1.0 34"0.4 35"0.6 31"0.4 38"1.6

Ns—SP type diversity for all EEG channels taken together; Ns()2)—the same like Ns, but without SP types, which were
presented in classification profiles less than in 2% cases;aq—subjects with high alpha-index;ay—subjects with low alpha-index;
‘"’—mean error.

The diversity of the type of SPs was estimated
as a ratio of the number of SP types detected in a
given EEG to the total number in the standard set
(32 standard SPs—100%). Diversity for the dif-
ferent EEG channels varied in the range of 31–
50% (for different cases) (Table 4).
The SP type displaying the lowest diversity

(P-0.001) was during the memory task(subjects
with low alpha-index), while the SP type display-
ing the maximum diversity was during the task

called ‘attention without memorizing’(P-0.001)
(Table 4). It was interesting to note that there is a
specific set of SPs for each EEG channel or small
group of channels, since the diversity in SP types
in all EEG channels taken together was substan-
tially greater (for different cases the range was
48"0.8%–68"1.3%) than in each individual
EEG derivation(P-0.001). Moreover, if SP types
that occurred in less than 2% of the cases were
not taken into account, then this value decreased
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Table 5
Mean values of the estimation of the SP type change in the neighboring epochs at different time shifts between them

Shift 50 100 150 200 250 300 350 400 450 500 550

Eyes closed 0.54 0.69 0.76 0.79 0.81 0.82 0.82 0.82 0.82 0.82 0.82
Eyes opened 0.58 0.72 0.79 0.83 0.85 0.85 0.86 0.86 0.86 0.86 0.86
Memory task 0.61 0.75 0.82 0.86 0.88 0.88 0.88 0.88 0.88 0.89 0.89
Memory task foraq 0.60 0.75 0.82 0.86 0.88 0.89 0.89 0.89 0.89 0.89 0.89
Memory task foray 0.62 0.75 0.82 0.86 0.87 0.87 0.87 0.87 0.88 0.88 0.88
‘Attention without memorizing’ 0.54 0.70 0.77 0.82 0.84 0.85 0.85 0.86 0.86 0.86 0.86
‘Random’ EEG 0.83 0.82 0.82 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.83

Averaged over all EEG channels and subjects. Shift—The number of the points of a digitized EEG signal between the initial
moments of the neighboring analysis epochs.aq—Subjects with high alpha-index;ay—subjects with low alpha-index. Italic
indicates the critical shift.

(P-0.001) to 31"0.4%–38"1.6% (for different
cases) (Table 4). This indicates that approximately
50% of the SP types have a very low occurrence;
i.e. not more then 2–3 times per 149 analysis
epochs in a 1-min EEG!
The data presented above refers to the level of

variability of SPs in the neighboring epochs which
overlapped by 80%. It would be expected that
where the epochs overlap to a lesser extent(until
they converge completely in time) the variability
in type of SPs should increase to a certain value
which is characterized by a stochastic level of the
SP type change incidence. At the equiprobable
occurrence of each of the 33 SP types(including
non-classified spectra) in the EEG, the relative
rate of their random alternation should be 1y(1y
33)s0.97. The actual EEG recordings showed that
some of SP’ types occur very frequently and others
are almost entirely absent. Consequently, the levels
of SP stochastic alternation in the actual EEG
should be substantially lower than 0.97.
In order to find the value of the relative rate of

SP stochastic alternation in the actual EEG, it was
subjected to a randomized mixing of SPs. In such
a way, the natural dynamics of SP sequence within
each EEG channel were completely destroyed, but
the percentage ratio between different types of SP
remained the same. This modified EEG was
described as ‘random’. Using the procedure of
randomly mixing SPs, the relative rate of the SP
type alternation from the first and to the last
interepoch shifts was 0.825"0.007(Table 5). This
value presents an estimation of the maximum
possible rate of relative alteration in the type of

SPs for a given EEG. Approaching this estimation
testifies to the attenuation of mutual SPs determi-
nation between the neighboring EEG analysis
epochs.
The average values of the relative SP alternation

rate in the actual EEG for different shifts between
the initial moments of the analyzed epochs(256
points) are given in Table 5 for different brain
functional states. The maximum rate of change in
the SP type, equal to 0.82, was reached at the shift
in 300 points with closed eyes. This rate remains
constant when the time interval between the epochs
is increased. The shift at which the maximum rate
of change in the SP type approach the value 0.82
was described as critical. It was shown that an
increase in the functional loading resulted in a
decrease of the critical shift to 200 points with
eyes open and to 150 points during the memory
task. On the other hand, a decrease in the func-
tional loading resulted in an increase of the critical
shift to 200 points during the task ‘attention
without memorizing’(compare with the ‘memoriz-
ing’ stage, Table 5). Thus, the SPs of the neigh-
boring analysis epochs within a single EEG only
have a significant deterministic influence on each
other where the overlap in epochs is no longer
than 50 points(Table 5). At greater shifts between
the epochs, the estimations of the SP type alter-
nation decrease practically to a stochastic level.

3.2. The dynamics of temporal stabilization of SPs
in local EEGs.

A single EEG spectrum illustrates the particular
integral dynamics of tens and hundreds of
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Table 6
The mean number of the individual EEG epochs(averaged for all EEG channels), which follow like blocks by ‘n elements’ in
succession without SP type change(including non-classified spectra—the type ‘0’), wheren—is an integer from 1 to 149

The block Eyes Eyes Memory Memory Memory ‘Attention ‘Random’
length closed opened task task for task for without EEG

aq ay memorizing’

1 34 37 39 38 41 32 72
2 22 24 25 25 25 23 17
3 15 15 15 16 15 16 6
4 10 9 10 10 9 11 3
5 6 7 6 6 5 8 1
6 4 3 3 3 2 5 1
7 2 2 1 1 1 2 –
8 2 1 1 1 – 2 –
9 1 1 – – – 1 –
10 1 1 – – – 1 –
11 1 – – – – 1 –
12 1 – – – – – –

The values are presented in the percentage from the total number of the individual epochs in all EEG recordings.‘–’—The absence
of the blocks with given length.aq—Subjects with high alpha-index;ay—subjects with low alpha-index.

thousands of neurons in a given cortical area at a
particular point in time(Dumermuth and Molinari,
1987). Therefore, the absence of variance of a
single spectrum during several analyzed epochs
proves that in a given cortical area the same macro-
regimen of neuronal pool activity is maintained
during that period. This phenomenon of a tempo-
rary stabilization may be explained by a stabiliza-
tion in the brain oscillatory patterns.
It was interesting to consider the mean number

of individual EEG epochs averaged across all EEG
channels, which follow like blocks by ‘n elements’
in succession without a change in SP type(includ-
ing non-classified spectra—the type ‘0’), wheren
is an integer from 1 to 149(Table 6).
The effect of the temporary stabilization of SPs

in the individual EEG was almost identical for all
functional states and took on a common character-
istic: this index decreased as the length of block
increased. At the same time, functional loading
such as opening eyes and further—memory task,
led to a reduction in the maximum length of block
from 12 (eyes closed) to 8 (the memory task)
because of the increase in the number of blocks
of length 1(Table 6). This effect is supported by
the increased relative incidence of change in type
of SPs with eyes opened and during the memory
task (Table 3). At the same time, the decreased

functional loading resulted in an increase in the
maximum block length from 8(the memory task)
to 11(‘attention without memorizing’ task). More-
over, the actual EEGs(Table 6) substantially
differed from the ‘random’ EEG(see above). An
excessive increase in the number of blocks of
length 1 for ‘random’ EEG may indicates a sto-
chastic process. It was also shown that the majority
of the blocks with the length equal to 1 consist of
the SP type ‘0’(disorganized andyor ‘noisy’ activ-
ity) for all functional states observed.
An analysis of the maximum period of stabili-

zation for various SP types showed that the brain
‘maintains’ the stabilization period of neuron’
activity for between 3.5 s(for the memory task)
and 4.7 s(when eyes are closed) depending on
the functional state and the type of rhythmical
activity generated(SP type). It was shown that
even in the absence of any correlation between the
EEG SPs there is a temporary stochastic stabili-
zation of the SPs, which may reflect merely occa-
sional combinations of SP types. The duration of
such periods(an EEG with a random mix of
different SP types) was substantially lower than in
the actual EEG and reached up to 2.3–2.6 s(for
different SP types).
The test–retest reliabilities of the classification

profiles parameters between the two sessions
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(obtained through 1–2 weeks) were very high
which confirmed the validity of the findings(for
example see Fig. 3).

4. Discussion

Analysis of various classification profiles of
EEG for subjects in different functional states have
shown that the whole palette of SPs of the individ-
ual EEG may be described by a limited and steady
set of SP types. It should be noted that in this
study only a 0.5–30 Hz frequency range was
examined(Section 2). Thus, it was shown, that
the number of different SP types that describe
EEG independently of the EEG channel, brain
functional state and individual peculiarities of the
EEG was always below 50% of the standard set
(ns32). This finding is in agreement with data
collected by other researchers(Barlow, 1985;
Creutzfeldt et al., 1985). It may be assumed that
the standard set consists of EEG SP types, which
reflect universal micro-temporal quasi-stationary
elements(Bodunov, 1988). These elements form
the EEG ‘portrait’ during macro-temporal transfor-
mations of the functional state(Kaplan and Shish-
kin, 2000).
As can be seen from the data obtained, approx-

imately 50% of SP types occur not more than 2–
3 times per 149 epochs analyzed in a 1-min EEG.
It is the rarely occurring SPs which characterize
the individuality of different EEG channels andy
or a subject’s EEG. The remaining 50% of SP
types were the present in all EEG channels, all
subjects and the various brain functional states
studied. Perhaps, this part of SP types may be
general for the brain(Bodunov, 1988). This hold
is supported by the fact that all significant trans-
formations, detected in EEGs during changes in
the brain’s activity, affected only this group of
general SPs(Table 7). This means that the main
part of the individual EEG segments, which has
individual connotation, remains at a constant level
whilst changes in the functional state of the brain
occur(e.g. the opening of eyes, different stages of
the memory task).
What characterizes the changes in these 50% of

general SPs? It was found that an increased func-
tional loading such as the opening of eyes and

then the performance of a memory task leads to a
significant decrease in the percentage of non-
classified spectra without changes in the number
of classified SP types. This means that the number
of some SPs that already exist in classification
profile was increased. Thus, during the ‘memoriz-
ing’ stage of the memory task, the number of
‘pure’ theta-rhythmical SPs and SPs withD–u
components increased when compared with the
‘waiting’ stage of the task. The activity in the
theta band may be responsible for the encoding of
new information and retrieval from short-term
memory (Klimesch, 1999). The delta response is
related to signal detection(Basar-Eroglu et al.,
1992). Moreover, short-term memory processes
have been associated with oscillations within the
4–7 Hz (theta rhythm) (Klimesch et al., 1994).
These findings suggest that the increased number
of theta-rhythmical SPs and SPs withD–u com-
ponents for the ‘memorizing’ stage when com-
pared with the ‘waiting’ period may indicate that
the signal detection and encoding in short-term
memory processing is playing a role.
At the same time, the decrease in the alpha-

rhythmical SPs and SPs mostly with alpha com-
ponents during the ‘memorizing’ and
‘keeping-in-mind’ stages of the memory task when
compared with the ‘waiting’ stage may be due to
the activation of cognitive and, perceptual pro-
cesses and stimulus encoding as was shown for
alpha rhythm desynchronization by Klimesch
(1997).
The different behavior ofa- and u-activity

during the memory task was also revealed by
Klimesch et al.(1994). The reciprocal relation-
ships betweena- and u-activity as with alpha
desynchronization and theta synchronization in
similar conditions suggest the existence of different
neuronal generators associated with the production
of alpha and theta rhythms(Klimesch, 1996). The
opposite results for the subjects with high and low
alpha-index during the ‘memorizing’ stage of the
memory task suggest that the neurodynamic pro-
cesses of the brain differ for these groups of
subjects.
However, all EEG transformations mentioned

above affected only 8–21% of the individual
segments at the EEG. Thus, an important conclu-
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Fig. 3. Example of the EEG classification profiles calculated for 1st and 2nd sessions for the memory task and for the three stages of the memory task separately.
Individual data for subject 03(O2 EEG channel) are presented. TheX-axis displays the labels(numbers) of the standard SP from 1 to 32. TheY-axis displays the
share of the corresponding SPs in the percentage from the total number of the classified SPs. A line graphic was chosen instead of a bar for the ease of comparison.
(Note thatX-axis consists of 32 discrete values, all the in-between values are meaningless.) r—coefficient of correlation.
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Table 7
General SP types, which occur in the EEG more than 2% of the cases for different brain functional states(italics)

Eyes open Eyes closed Memory task ‘Attention without
memorizing’

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12
13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
17 18 19 20 17 18 19 20 17 18 19 20 17 18 19 20
21 22 23 24 21 22 23 24 21 22 23 24 21 22 23 24
25 26 27 28 25 26 27 28 25 26 27 28 25 26 27 28
29 30 31 32 29 30 31 32 29 30 31 32 29 30 31 32

Other cells indicate that given SPs did not occur in the EEG for the particular brain functional state. The numbers in the cells
indicate the labels of the corresponding SPs from standard set.

sion from this observation is that the limited
number of SP types may successfully describe the
EEG, but only about the half of them are function-
ally active. It is these functionally active SPs of a
general nature that provide the changes of the
steady SP combinations during the changes in the
brain’s functional state. Evidently, the dynamic of
the brain’s informational processes may manifests
itself in the transformations of the small number
of packages of relatively stable patterns of the
cortex oscillatory activity(Basar et al., 2001).
At the same time, in the present work it was

found that concrete parameters in the lifetime and
the relative frequency of the occurrence of each of
the SPs are specifically related to a particular brain
functional state. So, it is interesting that even
during rest conditions when the eyes are closed,
the relative incidence of the SP type change during
the transition between neighboring EEG epochs
was more than 0.50. And this is in strongly
overlapping(by 80%) 2-s analysis epochs! This
apparent ‘switching’ from one dynamic to another
is characterized as multi-variability, with new pat-
terns being continually created, destroyed, and
subsequently recreated(Keslo, 1995). This finding
relates to the discrete(but not independent) work
of the different morphological brain systems
(Dierks et al., 1997; Strik et al., 1997) and
cognitive activity (for reviews see John, 2001;
Fingelkurts and Fingelkurts, 2001). Moreover, the
SP types changed more frequently during an
increase in the functional loading(eyes opening,
the memory task) (Table 3). The decrease of the

shift of the mutual SPs determination(Table 5)
and the reduction in the maximum block length
during the increase in the functional loading(Table
6) testifies to the same idea. It is important to note
that all these estimations did not approach the
possible characteristics of the EEG whose natural
sequence of SP type has been completely removed
in each individual channel(‘random’ EEG; Tables
5 and 6).
Furthermore, the maximum period of SP tem-

porary stabilization depended on the type of dom-
inant frequency and also decreased when the
functional loading was increased. However at the
same time, this parameter differed significantly in
the ‘random’ EEG, which may demonstrate that
the temporary stabilization of the main dynamic
parameters of neuronal activity had the non-occa-
sional character. Perhaps, the decrease in the sta-
bilization periods of SP type indicates that the
brain’s operations completed more dynamically
and that there exists a transition to a more differ-
ential organization of spectral relations, where
nerve elements become more independent and able
to function as separate informational channels
(Lindsley, 1961).
Before coming to the final conclusions, alter-

native explanations for the phenomena observed
must be considered. It could be suggested that
some of the results presented in this study could
be attributed to the EEG recording with a linked
ear reference electrode or volume conduction. This
explanation seems unlikely for the following rea-
sons:(a) the occipital and frontal regions clearly
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showed different accentuations in their EEG effects
(Section 3); (b) the analysis revealed, that each
EEG channel or small group of channels has its
own specific SP set(Table 4); (c) a high incidence
of the SP type changing during the transition
between neighboring EEG epochs was observed
and where this index was dependent on functional
loading(Table 3); (d) SP sets that were presented
in classification profiles were limited, but not
minimal: 50% from the standard one.
In another of our studies the same analysis for

102 locations of MEG-measurements was used. It
is well known that MEG-measurements have per-
fect spatial resolution, there are no reference elec-
trodes, and influence of the volume conduction is
minimal. In spite of these differences, the main
effects of discrete variability of SPs were almost
the same(paper in submission).
When taken together, analysis of the different

indices presented in this study show various(but
converging) aspects of the discrete dynamics of
multi-variability in SP types. Nevertheless, the
parameters of the occurrence of SPs in any given
EEG rather characterize the most general structure
of the segmental organization of an EEG.
The internal logic of this organization is evi-

dently hidden in the regulation of the sequential
combinations of the separate EEG patterns. It is
suggested that particular sequences of several EEG
patterns appeared in consistent groupings(steady
bundle with each other) and comprise more inte-
gral blocks of EEG structural organization. The
idea that there may exist stable ‘over-segments’ in
the individual EEG(the steady combinations of
the particular segment types) was first demonstrat-
ed by Jansen and Cheng(1988). Other researchers
have also found steady combinations of individual
patterns in EEG(Sanderson et al., 1980; Lopes da
Silva, 1981).
So, when taken together, these findings lead to

the conclusion that stabilization processes influ-
ence not only the parameters of the analyzed EEG
(the reduction of the functionally active segments),
but also the sequence peculiarities of the EEG
quasi-stationary segments(the temporary stabili-
zation of SP types). Here, we are faced with an
interesting phenomenon: the co-existence of a high
multi-variability of the EEG parameters with a

simultaneous stabilization of these parameters in
time. Perhaps, the high multi-variability of SPs
indicates a wide range of the possible variations
in current brain state or activity. On the other hand,
a temporary stabilization in the SPs reflects the
maintaining of the relative stability in the neuro-
dynamics within that particular time interval on
both a micro- and macro-level. The brain dynamics
may be viewed here as balancing between multi-
variability and metastability(Bressler and Keslo,
2001). So, a high incidence of the neighboring SP
types where a strong overlapping(of 80%) of 2-s
analysis epochs of the EEG was restricted by the
limited SP set and by a 50% reduction in the
functionally active SPs. This resulted in a relative
temporary stabilization of the SPs sequential
combinations.
Thus, the multi-variability of neuronal nets is

evidently discrete in time and limited by the
dynamics of the short quasi-stable brain states.
This supports the idea that it is the limitation of
degree of freedom of the neuron’s ensemble vari-
ables which allows these ensembles to perform a
finite number of operations(Kaplan, 1998).

5. Psychophysiological framework of the results

The brain keeps on surprising us with its uni-
maginable potential for multi-variability. It is evi-
dent, however, that to control effectively the
functioning of the organism, a strict constraining
is required on the degree of freedom that is given
at all levels of the brain structural and functional
hierarchy (for the discussion see Kaplan, 1998).
This problem of constraining the number of
degrees of freedom is, most probably, very difficult
to solve in a framework of brain states continuum.
The abrupt reduction of the number of degrees of
freedom during cognitive operations could be eas-
ily achieved if the dynamical organization of the
system is constrained by a finite number of meta-
stable states(Kaplan, 1998). The findings obtained
in present study support this view.
Taking also into account the hypothesis about

the hierarchy of the segmental description of the
EEG in different time scales, it could be suggested
that the discrete structure of brain activity depicted
in the EEG piecewise stationary structure is the
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framework in which a variety of rapid ‘microscop-
ic’ variables of a large system can obey the
‘macroscopic’ operational structure of brain activ-
ity (Kaplan, 1998). For peculiarities of the dynam-
ics of macroscopic operational structure of brain
activity, see the recent review(Fingelkurts and
Fingelkurts, 2001).
Thus, the spatial and temporal hierarchy of

discrete metastable states of neuronal assemblies
can serve as a basis of functioning of such a
potentially multivariable system like the brain
(Kaplan, 1998). These discrete metastable states,
in their turn, must appear in the EEG in the form
of its piecewise stationary organization which can
be studied by means of Sliding Short-Time Fourier
Transform with subsequent Adaptive Classification
of individual SPs.
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Appendix A: Adaptive classification of EEG
SPs (SCAN-M, was developed and tested at
Moscow State University)—published firstly in
Russian (Kaplan et al., 1999)

Main idea of EEG SP classification
Firstly, it was necessary to create a standard SP

set that covers the diversity of current individual
SPs taken within normative EEGs. This standard
SP set was then used to calculate the matrix of
Pirson’s correlation coefficients(CC) between the
standard and the current SPs of analyzed EEGs.
Each current SP was labeled with the number of
those standard SP for which the maximum CC
exceeded a certain threshold was achieved. Where
the specified threshold was not achieved, the cor-
responding current SP was given the category
‘non-classified SPs’ and was labeled as ‘0’. Thus,
each individual EEG SP was given a classification

number, which corresponds to the label(number)
of the standard SP most similar to it. Each channel
of the whole EEG was characterized further by a
classification profile.

Standard SP set creation
Firstly, 48 8- and 16-channel EEGs were record-

ed for subjects with strong- and weak-pronounced
alpha activity during rest conditions(closed and
opened eyes) and a memory task. Then, each EEG
channel was reduced to the sequence of short-term
power SPs. After that, all individual SPs(ns
3000) obtained from EEGs registered for various
subjects during different conditions were mixed
into one SP pool.
Secondly, three independent highly qualitative

experts selected by means of visual inspection the
most representative SPs for 3000 short-term SPs.
In the final version the standard SP set included
32 SPs (only those SPs which had minimum
mutual correlation, were selected).
During the adjusting of the classification pro-

cedure it was possible to use either amplitude or
power values of EEG spectrum and, also to change
the values of the CC threshold level. In order to
decrease the effects of individual spectra variability
it was decided to employ two procedures: either
spectrum glide smoothing, or choosing the maxi-
mum CC out of the three values of the correlation
function, which was calculated between the stan-
dard SP and the current SP on zero shift and on
double-side shift by one point("0.5 Hz). Accord-
ing to tests and modeling calculations, the latter
procedure was chosen.

Basic procedure of adaptive classification
This procedure was performed in two stages.

During the first stage, the initial matrix of mutual
correlations between standard and current individ-
ual SPs of analyzed EEG was calculated(for each
channel separately). According to the maximum
CC from this matrix each current SP had the same
label (number) as in the corresponding standard
SP.
Attempts to decrease the number of non-classi-

fied SPs invariably resulted in a considerable
increase in the number of the standard SPs in the
SP set. Moreover, it was necessary to create
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specific sets of the standard SPs for each of EEG
derivations. It is the absence of a standard set’
adaptability for particular EEG that prevents sci-
entists from devising SP classification procedures
on the basis of a simple correlation comparison of
standard and current SPs. For this reason this study
was conducted on a modified SP classification
using a second stage—the creation of the actual
SP set.

The creation of the actual SP set
On the basis of CC which were obtained at the

first stage, the current short-term SPs were sorted:
all current SPs for which the CCswere equal or
exceeded the value 0.71 were attributed to the
corresponding standard classes. According to this
algorithm the same current SPs may be included
simultaneously into different standard classes. It
creates a unique palette of spectral variety in each
class. The features of standard SP which form this
particular class, limit the variability within this
class. Then, the current SPs which were included
in a particular class, were averaged within this
class. This procedure was performed for all classes
separately for each EEG channel. On the back of
this, the standard spectra were reconstructed but
taking into account the peculiarities of spectral
description of concrete channel of the particular
EEG. Thereby an ‘actualization’ of the initial
standard SP set was performed. In other words,
they were converted into the so-called actual SPs.
Thus, by using the common standard SP set for

every given EEG the new set of spectra which
adapted exactly to the particular EEG appeared.
Each of these actual SPs resembled its standard
predecessor however it differed from it in that it
showed more similarity with the current SPs of
particular EEG. This actual SP set was used further
for the final classification of the SPs.

The final optimization of standard SP set
The adaptive classification of the current SPs

using actual SP set produced two new problems.
(1) Some actual SPs may be differ so greatly from
the standard SPs which ‘generate’ them, that they
almost resemble another standard SP—the effect
of renumbering; (2) Some actual SPs may not
bear resemblance to any other standard SPs accord-

ing to the established threshold of CC—the effect
of declassification. In both cases a one-to-one
correspondence between the labels(numbers) of
standard and actual SP classes was lost. This might
complicate the comparison of the results of SP
classification for different EEGs. These problems
were solved by ‘manually’ editing some standard
SPs with subsequent repeated tests of the new
standard SP sets. Editing of standard SPs involved
moving apart(Ds1.5 Hz) those main frequency
peaks, which during choosing the maximum CC
out of the three values of correlation function
calculated for zero shift and double-side shift by
one point ("0.5 Hz), may occupy the same
frequency. As the result of such correction of
standard SPs the number of cases of actual SP
‘renumbering’ and ‘declassification’ were
decreased to 0.2 and 0.6% correspondingly which
does not prevent the comparison of different SP
classifications for different EEGs.

General remarks
In each classification technique the most essen-

tial criterion to optimize the procedure is the
degree of classification of the current set of seg-
ments by means of the compact standard SP set.
The suggested adaptive classification of SPs is
based on 32 standard SPs, 27 patterns of which
correspond to not less than 96% of classified EEG
segments. The number of non-classified SPs does
not usually exceed 10%. According to the testing
of the classification procedure, the small variations
of the standard SP set did not result in changes in
the final result due to adaptation stage(actualiza-
tion of SPs).
When considered briefly, the simplicity, the

universality of the standard SP set, the adaptability
to the signal and classification accuracy, the adap-
tive classification technique compares favorably to
other classification methods. Also, adaptive clas-
sification technique presented in this paper
designed to handle a temporal data what is missing
in other classification methods. Besides this, by
using this approach it is possible not only to
distinguish two or more different states, but also
to capture ‘why they are different’.
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